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Context: Create real-time digital twins of an organ (e.g. liver).

Objective: Develop an hybrid | finite element ‘/| neural network | method.

accurate quick + parameterized
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Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective: Develop an hybrid | finite element / method.

quick + parameterized

Parametric Poisson problem (with homogeneous Dirichlet BC):
For one or several i € M, find u : 2 — R such that

—Au(xp) =flp), (op) €QxM,
u(x; p) =0, (x, p) € 002 x M,

with Q@ C R? a domain (d the spatial dimension).
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Classical approaches

Enriched finite element method using PINNs

Numerical results
2D Poisson problem on Square - Dirichlet BC
3D Poisson problem on Cube - Dirichlet BC
2D Anisotropic Elliptic problem on Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC

Extension to non-linear problems
Physics-Informed Neural Network (PINN)
Finite Element Method (FEM)

Enriched finite element method using PINNs




Classical approaches
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Physics-Informed Neural Networks

Standard PINNSs: Find the optimal weights 6*, such that

6* = argmin (w, J(6) + ws J»(6)), (Po)
0
with 2
Ji(0) = [o Joy |Aua(x, 1) + fx, )| “dxdp,
boundary loss I(0) = [ s [og |ua(x, M)|2dxdu,

with w, and wy, are some weights.

ug is a neural network, e.g. fully-connected NN.
(see example in 2D with 2 parameters)

Monte-Carlo method: Discretize the cost functions by random process.
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Variational Problem:
Find u, € V2 such that, Vv, € V2, a(up, vi) = I(vs), (Pr)

with h the characteristic mesh size, a and / the bilinear and linear forms given by
G(Uh,Vh) = / Vuh . VV/-,, /(Vh) = /th,
Q Q

and Vf,’ a continuous, piecewise polynomial space of degree k.

Cartesian mesh

T[Ern and Guermond, 2004]
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Finite Element Method'

Variational Problem:
Find u, € Vi such that, Vv, € V), a(up, vi) = I(vh), (Py)

with h the characteristic mesh size, a and / the bilinear and linear forms given by
a(up,vy) = / Vup - Vvy, (vy) = /fv,77
Q Q
and \/,9 a continuous, piecewise polynomial space of degree k.

Linear system: Let (¢, ..., ¢y, ) a basis of .
Find U € R such that

AU = b,

A= (a(er (bj))lSiy/‘SNdofs € IRNeots XNaots

b= ((4))1<c,, € R

Cartesian mesh

T[Ern and Guermond, 2004]
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Finite Element Method'

Variational Problem:
Find u, € Vi such that, Vv, € V), a(up, vi) = I(vh), (Py)

with h the characteristic mesh size, a and / the bilinear and linear forms given by
a(up,vy) = / Vup - Vvy, (vy) = /fv,77
Q Q

and \/,9 a continuous, piecewise polynomial space of degree k.

Linear system: Let (¢, ..., ¢y, ) a basis of .
Find U € R such that

AU = b,

A= (G(¢/’ ¢j))1§i7j§Ndofs € RNdeSXNdeS’ /
b= (l(¢f))1ggNdofs € RMes, !

M degrees of freedom

T[Ern and Guermond, 2004]
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Finite Element Method'

Variational Problem:
Find u, € Vi such that, Vv, € V), a(up, vi) = I(vh), (Py)

with h the characteristic mesh size, a and / the bilinear and linear forms given by
a(up,vp) = / Vup - Vvy, (vy) = /fv,77
Q Q

and \/2 a continuous, piecewise polynomial space of degree k.

Linear system: Let (¢, ..., ¢y, ) a basis of .
Find U € R such that

AU = b,

A= (a(er qu))lSiJSNdofs € IRNeots XNaots
b= (l(¢/)) 1<< N € RNaos A
h \‘ = Ngofs /‘
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Finite Element Method'

Variational Problem:
Find u, € Vi such that, Vv, € V), a(up, vi) = I(vh), (Py)

with h the characteristic mesh size, a and / the bilinear and linear forms given by
a(up,vp) = / Vup - Vvy, (vy) = /fv,77
Q Q

and \/2 a continuous, piecewise polynomial space of degree k.

Linear system: Let (¢, ..., ¢y, ) a basis of .
Find U € R such that

AU = b,

A= (a(er qu))leJSNdofs € IRNeots XNaots
b= (l(¢j))1S§Ndofs € RMes. 2
h \‘ = Ndofs /‘
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Finite Element Method'
Variational Problem:
Find u, € Vi such that, Vv, € V), a(up, vi) = I(vh), (Py)

with h the characteristic mesh size, a and / the bilinear and linear forms given by

a(uh7vh):/Vuh~Vv,,, l(vh):/fv,77
Q Q

and \/,9 a continuous, piecewise polynomial space of degree k. k=1)
Linear system: Let (¢, ..., ¢y, ) a basis of .
Find U € RMes such that

AU = b,

A= (G(¢/’ ¢j))1§i7j§Ndofs € RNdeSXNdeS’ /
b= (l(¢f))1ggNdofs € RMes, !

M degrees of freedom

T[Ern and Guermond, 2004]
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Finite Element Method'
Variational Problem:
Find u, € Vi such that, Vv, € V), a(up, vi) = I(vh), (Py)

with h the characteristic mesh size, a and / the bilinear and linear forms given by

a(uh7vh):/Vuh~Vv,,, l(vh):/fv,77
Q Q

and \/2 a continuous, piecewise polynomial space of degree k. (k= 2)
Linear system: Let (¢, ..., ¢y, ) a basis of . | |
Find U € RMes such that
AU - b, . (]
N ofs N ofs
A= (“(¢fv¢f))1§f,féwdofs € R, : |
— ) Neots
b= ()1 <j<n,, €R™™ . . . .
k ﬂ = Ndofs /‘
T[Ern and Guermond, 2004]
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Finite Element Method'
Variational Problem:
Find u, € Vi such that, Vv, € V), a(up, vi) = I(vh), (Py)

with h the characteristic mesh size, a and / the bilinear and linear forms given by

a(uh7vh):/Vuh~Vv,,, l(vh):/fv,77
Q Q

and \/2 a continuous, piecewise polynomial space of degree k. (k = 3)
Linear system: Let (¢, ..., ¢y, ) a basis of . " . . - X
Find U € RMes such that s - Y
AU = b, 1= = =
A= (0(¢f7¢/))1§i,féwdofs € RfeonMoor, .. - .
b= (/(¢j))1g§,\,dofs € RMes, N .
k /‘ Ndofs /‘

T[Ern and Guermond, 2004]
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Enriched finite element method
using PINNs
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P1pe11ne of the Enriched FEM
{ .. '
OFFLINE : PINN training
Inputs Output
3 x € Q) : space coordinates Ug(zx, p) : prediction of 3
! p € M : parameter the PDE solution u(x, p) |
. 7
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Pipeline of the Enriched FEM

{ T in h
OFFLINE : PINN training
Inputs Output
3 x € Q) : space coordinates Ug(zx, p) : prediction of 3
! p € M : parameter the PDE solution u(x, p) |
. v
ONLINE (fixed pt) : PINN evaluation + Enriched FEM resolution
i PINN evaluation | Output
3 Ug(-, p) : prediction for 3 3 enriched FEM solution 3
gt g gy | (e on e e s |
L enriched by uy J

Complete ONLINE process : quick +
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Additive approach
Variational Problem: Let ug € H*"1(Q) N H} () be a PINN prior.
Find G € V2 such that, Vv, € V2, a(CF,vi) = I(vy) — a(ug, vs), P

with the enriched trial space \f,f defined by

Vi ={uf =uw+ G, G e ).

General Dirichlet BC: If u = g on 0f2, then

G =g—up ondQ, -

with ug the PINN prior. T Ug

We expect that the modified problem will give the
same results as the standard one on
coarser meshes.
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Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote u, € V,, the solution of (Py) with Vj, the standard trial space. Then,

lu— upl|i2 < Cp2 hk+1|U|Hk+1.
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Convergence analysis

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote u, € V,, the solution of (Py) with Vj, the standard trial space. Then,

lu—unllz < G2 H*H e

J
Theorem 2: Convergence analysis of the enriched FEM [Lecourtier et al., 2025]

We denote u;” € V| the solution of (P,") with V; the enriched trial space.

Then,
lu = uif lee < | Mo | (o A4 )
u—u, . .
% < 1 = Gains of the additive approach.
H’
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Numerical results

2D Poisson problem on Square - Dirichlet BC

3D Poisson problem on Cube - Dirichlet BC

2D Anisotropic Elliptic problem on Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC




Numerical results

2D Poisson problem on Square - Dirichlet BC
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Problem considered

Problem statement: Consider the Poisson problem in 2D with Dirichlet BC:
—Au=f in Qx M,
{ u=0, on 90 x M,
with 2 = (—0.57,0.57)% and M = [—0.5,0.5]? (p = 2 parameters).

Analytical solution: ¢t = (1, ps) € M

(= m)* + (v — p2)®
2

u(x, ) = exp < ) sin(2x) sin(2y).

Parametric PINN training:
MLP 5 layers (sine - 40, 60, 60, 60, 40); LBFGs optimizer (5000 epochs - 6000 col. pts).
Imposing the Dirichlet BC exactly in the PINN with the levelset ¢ defined by

o(x) = (x+ 0.5m)(x — 0.57)(y + 0.57) (y — 0.57).
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= (0.05,0.22)
Error estimates in L2 norm:

10—12 h

1.74e-2 3.50e-2 7.05e-2 1.43e-1 2.96e-1

—8— FEMP; —— FEM Py —— FEM P3
- M- AddP; - e- AddP; - A- AddP3
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Extension to non-linear problems

Online phase - 1 parameters instance

Error estimates in L2 norm:

1076 ¢

L2
1004

10712 —

1.74e-2 3.50e2 7.05e2 1.43e-1 2.96e-1

h

—8— FEMP; —— FEM P, —— FEM P3
-m- AddP; -e- AddPy -4- AddP3

9/30

p = (0.05,0.22)

Naofs required to reach the same error e:

Conclusion
(e}

Ndofs
k e FEM Add
1 21072 14161 64
-107* 143641 576
2 -107* 6889 225
-107% 31329 1089
3 -107% 6724 784
-107% 20164 2704
ha NDV2

dofs

References
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Numerical results

3D Poisson problem on Cube - Dirichlet BC
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Problem considered

Problem statement: Consider the Poisson problem in 3D with Dirichlet BC:
—Au=f in Qx M,
{ u=0, on I x M,
with Q = (=0.57,0.57)3 and M = [—0.5,0.5]3 (p = 3 parameters).

Analytical solution: p = (pu1, p12, i3) € M

u(x, ) = exp (- (=) + v 2"2)2 += “3)2> sin(2x) sin(2y) sin(22).

Parametric PINN training:
MLP 5 layers (tanh - 40, 60, 60, 60, 40); LBFGs optimizer (5000 epochs - 40000 col. pts).
Imposing the Dirichlet BC exactly in the PINN with the levelset ¢ defined by

o(x) = (x+ 0.57)(x — 0.5m)(y + 0.57)(y — 0.57)(z + 0.57)(z — 0.57).
Training time: 12 minutes on NVIDIA RTX 2000 (8GB VRAM).

LECOURTIER Frédérique
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p =(0.05,0.22,0.1)

Error estimates in L2 norm:

L2
10-1
103
__-m
- '. -
_-m- 2
O 1 h
550%39@19 net A a0e? 1%"6'\

|+ FEMP; - m- AddP,




p =(0.05,0.22,0.1)

Error estimates in L2 norm: L? error w.r.t. online time*:
12 L2
10-1 1011,
103 103
--" = LS -~
,—'.—‘— ~‘~.~“~
- -m- 2 .-
10_5’4? . T ! h 10—5 T- -
o 50eoe ne | poe?t 868" 10-1 100 1ot Time(s)

* mesh + assembly + solve

| —&— FEMP;, -®- Add P, + prior derivatives evaluation
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Online phase - 1 parameters instance I

p = (0.05,0.22,0.1)

Error estimates in L% norm: L2 error w.r.t. online time*:

2 L2
107 107t

e e
1073+ 1073 +
__-m .
_-m i N
--m 4’2 TE -
_5”." 1 _5 | i~,.

10 % h 10 ‘ ‘ ‘

% 1.%6@\‘ 10-! 100 10t Time(s

e T

* mesh + assembly + solve
—&— FEMP; - ®- AddP, ‘ + prior derivatives evaluation

LECOURTIER Frédérique
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Online phase - 1 parameters instance II

Introduction  Classical approaches
oo 000

p = (0.05,0.22,0.1)

Ngofs @nd online time required to reach the same error e:

Online time*™
Add

N N dofs

e FEM Add FEM Add FEM
1-1072% 152 12 351-10% 1.73-10® (7.65-10Y) 5.2-1072
1-107* 484 39 1.13-10% 5.93-10* (2.8-10% 9.26-10!
1-1075 1539 122 3.65-10° 1.82-10% (1.02-10%) (5.26-10%)

~— 14717
Cartesian mesh: Ngors = N3 nodes (P; elements).

* The results in brackets are extrapolations.
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[o]e} 00 0000

Online phase - 1 parameters instance II
p = (0.05,0.22,0.1)

Ngofs @nd online time required to reach the same error e:

Online time*™
Add

N N dofs

e FEM Add FEM Add FEM
1-1072% 152 12 351-10% 1.73-10® (7.65-10Y) 5.2-1072
1-107% 484 39  1.13-10% 5.93-10* (2.8-10% 9.26-10~!
1-1075 1539 122 3.65-10° 1.82-10% (1.02-10%) (5.26-10%)

~— 14717

Cartesian mesh: Ngors = N3 nodes (P; elements).

* The results in brackets are extrapolations. f Training tlme |
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Parametric framework

References

How many parameters instance n, are needed to balance training?

—— FEM P,
. _ --- AddPy
T T
ime (s) ime (s) [ offline cost
6000 +
1500 |
1000 |
708
500 +
40
0 i % e
0 1920 40

To achieve e = 1073 To achievee = 5 - 104

Online: assembly + solve + prior derivatives evaluation
Offline: mesh + training time
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Numerical results

2D Anisotropic Elliptic problem on Square - Dirichlet BC
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Problem considered

Problem statement: Considering an Anisotropic Elliptic problem with Dirichlet BC:
—div(bVu) =f, in Q x M,
u=0, on 90 x M,

with Q = (0,1)? and M = [0.4,0.6]? x [0.01,1] x [0.1,0.8] (p = 4 parameters).
Right-hand side and diffusion matrix: p = (u1, 2, 0,¢€) € M

(x=m)*+ - Nz)z)
0.02502 '

o -

ex?+y? (e—1)xy
Dlx, ) = <(6 -1y C+e? )’

Parametric PINN training:

MLP' 5 layers (tanh - 40, 60, 60, 60, 40). Adam optimizer (15000 epochs - 8000 col. pts).
Imposing the Dirichlet BC exactly in the PINN with the a level-set function.

Twith Fourier Features, Tancik et al. [2020]

LECOURTIER Frédérique
14/30 Enriching continuous Lagrange FE approximation spaces using NN



Error estimates: 1 parameter instance

M = (0.51,0.54,0.52, 0.55)

12

[
A
A

1010

5.55e-3 1.11e-2 2.24e-2 4.56e-2 9.43e-2

—— FEMP; —— FEM Py, —— FEMP3
- M- AddP; -e- AddP; -4- AddPs
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Online phase
Error estimates: 1 parameter instance

pM = (0.51,0.54,0.52,0.55)

A-

é%

10 A7 T :
1077 1 I
5.55e-3 1.11

e-2 224e2 456e-2 9.43e-2

h

—— FEMP; —8— FEM Py, —— FEM P53
-m- AddP; -e- AddPy -4- AddPs
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Numerical results

Extension to non-linear problems

Conclusion References
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Gains achieved: ||u — u|,2/|lu — u; ||,2

Considering n, = 50 parameters instances
S = {u(l)’...7u<”p)} .

Gains in L2 rel error
of our method w.r.t. FEM

min max mean
712 82,57  35.67
3.54 35.88 18.32
1.33  26.51 8.32

wlo| ==

Cartesian mesh: N2 nodes with N = 20.

LECOURTIER Frédérique
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Numerical solutions and errors

Extension to non-linear problems
000 00000 O00® 0000 00 0000 000 00000 O

Additive correction C;

Conclusion

Solution u FEM solution uy, Additive solution u;"
1 T T T T T T T
21073 | A 2107% | ¥ 21072
0.75 |- f
Y \ \ 0
0.25
[ I 21070
Il Il Il Il
0 025 5 0 0 025 5 075 1 0 025

Absolute additive error |u — (ug + C;

w)l

Il
z 075

References

3.107%

—3.107*

LECOURTIER Frédérique
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Numerical results

2D Poisson problem on Annulus - Mixed BC
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Problem considered

Problem statement: Considering the Poisson problem with mixed BC:

—Au =, in Qx M,
u=g, on I'r x M,

0
—u+u:gR, on I x M,
on

with Q = {(x,y) € R?,0.25 < x> +y? < 1} and M = [2.4,2.6] (p = 1 parameter).

Analytical solution and boundary conditions: pt = eM
VX2 +y?

1 )
U(Xaﬂ)—l_T,

gbep)=1- llnn(&l)) and golxipr) =2+ L) _13?4(51)

Parametric PINN training:
MLP 5 layers (tanh - 5x40); LBFGs optimizer (4000 epochs - 6000 col. pts).
Imposing the mixed BC exactly in the PINN? (+ Sobolev training).

"[Sukumar and Srivastava, 2022]
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Online phase

Error estimates: 1 parameters instance Gains achieved: ||u — u|,2/|lu — u; ||,2

M(l) —9251 Considering n, = 50 parameters instances

S = {u(1>,...,u<"”)}.
0=ty

Gains in L2 rel error
of our method w.r.t. FEM

10-6 ¢ .
k min max mean
1 1512 137.72 55.5
10~ ‘ ‘ ‘ ~h 2 31 77.46  58.41
1.10e-2 2.20e-2 4.35e-2 8.70e-2 1.67e-1 3 1872 2149 20.6
—m— FEM P, —— FEM [Py, —— FEM PP3
-m- AddP; - @- AddP; - 4- AddP3 Mesh size: h = 1.33 - 107!
LECOURTIER Frédérique
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Numerical solutions and errors

Solution u FEM solution uj, Additive solution u; Additive correction C;
2 4-107°
3.107°
2-1073
1.1073
0

Absolute FEM error |u — up| Absolute additive error |u — (ug + C;7)|
1 T T 10" 1 107!
‘
0.5 — 0.5
1072 10-3
4 Y
107° 10-°
—0.5 |- - —0.5
1 | | -7 1 -7
-1 -05 05 1 1° 10

pV =251 (k=1,h=167-10"")
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Extension to non-linear problems

Physics-Informed Neural Network (PINN)
Finite Element Method (FEM)
Enriched finite element method using PINNs
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Heated cavity test case’

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity):
We consider 2 = (—1,1)? a squared domain and e, = (0, 1).
Find the velocity u = (u1, us), the pressure p and the temperature T such that

(u-VYu+Vp—vAu—g(fT+1)e,=0 inQ  (momentum)

V-u=0 inQ (incompressibility) )
u-VT—kAT=0 in{ (energy)
+ suitable BC

with g = 9.81 the gravity, 3 = 0.1 the expansion coefficient, v = 0.01 the viscosity
and k¢ = 0.01 the thermal conductivity. (Rayleigh number: 156 960)

"Non-parametric study.
LECOURTIER Frédérique
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Heated cavity test case’

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity):
We consider x = (x,y) € Qand e, = (0, 1).
Find U = (u,p, T) = (u1,ua,p, T) such that
Rimom (U; x, i) = 0 in (momentum)
Rinc(U; %, 1) = 0 in Q (incompressibility) (P)
Rener(U; x, ) = 0 in Q (energy)
with g = 9.81 the gravity, 5 = 0.1 the expansion coefficient, v = 0.01 the viscosity
and ks = 0.01 the thermal conductivity. (Rayleigh number: 156 960)

Boundary Conditions:
No-slip BC: u = 0 on 9f) Isothermal BC: T = 1 on the left wall (x = —1)
T= —1ontherightwall (x = 1)

or
Adiabatic BC: = 0 on the top and bottom walls (y = £1, denoted by I',q)
n

"Non-parametric study.
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Neural Network considered
We consider a non-parametric NN with 2 inputs and 4 outputs, defined by
Ug(x) = (u1,0, U2,0,P0, To) (x).

The Dirichlet boundary conditions are imposed on the outputs of the MLP by a
post-processing step. [Sukumar and Srivastava, 2022]

X1 u1 9 = 0 on 0N
X1 s g = 0 on O
T — 1 forx=-1
XWHM "7Y-1 forz=1
We consider two levelsets functions (1 and (2, and the linear function g defined by
pr(xy) = =D+ Dy -1y +1),
p2(6y) = (x=1)(x+1) and glxy) =1—(x+1).
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PINN training

Approximate the solution of (P) by a PINN : Find the optimal weights 6*, such that
¢* = argmin ( + + +Joa(0) ), (Po)
0

where the different cost functions are defined by

adiabatic condition Jaa(0) = [y frd |6T9(X“ } dxde,

J(0) = [ Joy [R(Up (%, 1) x, )| el

with Ug the non-parametric NN and e the PDE considered (i.e. inc, mom or ener).

loss history
102 — total loss
Network - MLP Training (ADAM / LBFGs) , l neomp
10° I
layers 40,60, 60, 60, 40 Ir Te-3 40000 — ns2
o — energy
4 sine Nepochs 10000 Npe 30000 ! — beTd
X i 10 il
+some weights to balance the different losses. ‘ "\"\w«.
1076 . -

1A . . 0 2000 4000 6000 8000 10000
Discretized by a random process using Monte-Carlo method.
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Non parametric PINN prediction

uie us.g

Prediction:

22601 99002 19602 1.4e-01 _26e01 -43e-01 _-21e-01 12602 2301 46601 -1.00400 50001 000400 _5.00.01 _1.00+00
-_— - T— = —

)

Ulref — U1,0 U2, ref — U2,0 Tet — T

Error map':

L2 error: 41002 26002 -11e02 39003 1902 35602 22002 86003 44003 17002 0 O 02
(relative) 7.60 x 1072 5.38 x 1072 9.63 x 102

"Reference solution computed by FEM on an over-refined mesh.
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Discrete variational formulation
We consider a mixed finite element space M, = [V,?}2 X Qp X Wy (4 unknowns).
Variational Problem: Find U, = (uy, pp, Ty) € My s.t., (v, qn, wy) € MY,
/(u;7 -V)up - vhdx+/1,/ Vup : Vv, dx
Q Q
—/ pn V- vy dx—g/ (1+ BTh)ey - vpdx =0, (momentum)
Q Q
(Pn)

/ gn V - updx + 107 / Gnpndx =0, (incompressibility + pressure penalization)
Q Q

/ (uh . VTh) wh dx + / kaTh - Vw,dx =0, (energy)
Q Q
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Discrete variational formulation
We consider a mixed finite element space M, = [V,?}Q X Qp X Wy (4 unknowns).
Variational Problem: Find U, = (uy, pp, Ty) € My s.t., (v, qn, wy) € MY,
/(uh -V)up - vhdx+/1,/ Vup : Vv dx
Q Q
—/ pn V- vy dx—g/ (1+ BTh)ey - vpdx =0, (momentum)
Q Q
(Pn)
/ gn V - updx + 107 / gnpndx =0, (incompressibility + pressure penalization)
Q Q

/ (uh . VTh) wh dx + / kaTh - Vw,dx =0, (energy)
Q Q

Non-linear terms =- Non-linear system to solve.
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Newton method

Denoting Ngofs the dimension of My, we want to solve the-non linear system:
F(0) =0

with F : RNt — RNt the non-linear operator associated to (P,) and U € RNe= the
unknown vector.

Algorithm 1: Newton algorithm

Initialization step: set 7 = go:

forn > Odo
Solve the linear system F(I™)) + F ()51 = 0 for 6 +1;
Update 0t1) = g 4 s+,

end
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Newton method

Denoting Ngofs the dimension of My, we want to solve the-non linear system:
F(0) =0

with F : RNt — RNt the non-linear operator associated to (P,) and U € RNe= the
unknown vector.

Algorithm 1: Newton algorithm

Initialization step: set 7© = go:

forn > Odo
Solve the linear system F(I™)) + F ()51 = 0 for 6 +1;
Update 0t1) = g 4 s+,

end

/\ The choice of the Uo is crucial for the convergence of the Newton method.
Solution: Continuation method where we progressively increase the non-linearity of the
problem.

LECOURTIER Frédérique
25/30 Enriching continuous Lagrange FE approximation spaces using NN



Extension to non-linear problems

Enriched finite element method using PINNs



Introduction ~ Classical approaches  Enriched FEM using PINNs  Numerical results Extension to non-linear problems ~ Conclusion  References
00 0000 O 000 00000 0000 0000 00 0000 00O 08000 O

Additive approach

Considering the PINN prior Ug = (ug, pg, Tp), we define the mixed finite element
space additively enriched by the PINN as follows:

with M0 = V212 x Qy x Wi, Ul = (uf . pif . TF) e M and ¢ = (¢if,. G, 6.
We can then define the three finite element subspaces of M,'f as follows:
072
Vi ={uf =w+cf,, ¢, €W}, -
Q= {p =po+ Gl Gy € Qi) __ Us
0 '-..........,,...
Wy ={Ty =To+ Gy Gr €W}, oy

where C,;'ju, C,','fp and C,T,T becomes the unknowns.
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Modified variational formulation

Weak problem : Find C; = (C,

h,u»

G Cir) € MY s, V(vh, gn, wy) € MY,
»/Q [(ue ’ V)ug + (u9 : V)Chv.u + (C/‘vv.u : )u9 + ( hu* v)c/v‘.u] - Vi dx

+u (/ Yug : Vvydx + Ve, Vvhdx) + (/ Vpe - vhdx—/ C;rpV~vhdx)
Q Q Q Q

— g/ (14 B(To + C, 1))ey - v dx = 0, (momentum)
@ ®h
gn [V ug+V-c, Jdx + 1074/ gn (po + C,Tp) dx = 0, (incompressibility + penal)
o ,

[ug - VTy +up - VG +¢), - VTg+¢, -V Jwyax

:)\o\

+ kf (/ VTy - Vwy dx + / VCﬁ_T - Vwp dx wy ds) = 0, (energy)
Q Q

with Ug = (ug, pg, Tp) the PINN prior and some modified boundary conditions.
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Newton method - Additive approach
Denoting Nyofs the dimension of Mh , we want to solve the non-linear system:
F@(E) =0

with Fp : RNes — RNeoss the non linear operator associated to the weak problem (P,f)
and C € RMos the correction vector (unknown).

Algorithm 2: Newton algorithm

Initialization step: set ¢ — 0:

forn > Odo
Solve the linear system Fg (C") + Fy (C™)5" 1) = 0 for 6 +1);
Update ¢t = ¢ 4 s(n+1).

end
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Ngofs @nd online time required to reach the same error e:

29/30

»12
1071
—&— FEM Py
u -m- AddPy
10-3
10-° - - > Time (s)
10-1 100 10t
Ngofs Online time
e FEM Add FEM Add
1-1072 33204 13764 1.29 0.31
1-107* 150339 70303 4.76  1.78
1-1075 690924 339231 20.34 6.42

References
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Conclusion

+ Offline/online framework:

- Offline phase: Training a PINN over a parametric space.
- Online phase: (fixed parameter instance)
Quick and accurate resolution of the FEM correction problem using the PINN prior.

* Numerical results: Several parametrics PDEs.

+ Extension to non-linear problems :
First promising results for the incompressible Navier-Stokes equations.

Perspectives:

]

+ Improve Navier-Stokes results:

- Improved parametric PINN training.
- Different meshes by unknowns (+ parameter
dependency).

+ Extend the approach to more complex
geometries.

Preprint (linear)
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