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Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective: Develop an hybrid finite element / neural network method.
accurate quick + parameterized
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Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective: Develop an hybrid finite element / neural network method.
accurate quick + parameterized

Parametric Poisson problem (with homogeneous Dirichlet BC):
For one or several µ ∈ M, find u : Ω → R such that{

−∆u(x;µ) = f(x;µ), (x,µ) ∈ Ω×M,

u(x;µ) = 0, (x,µ) ∈ ∂Ω×M,
(P )

withΩ ⊂ Rd a domain (d the spatial dimension).
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Classical approaches
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Physics-Informed Neural Networks
Standard PINNs: Find the optimal weights θ⋆, such that

θ⋆ = argmin
θ

(
ωr Jr(θ) + ωb Jb(θ)

)
, (Pθ)

with
residual loss

boundary loss

Jr(θ) =
∫
M
∫
Ω

∣∣∆uθ(x,µ) + f(x,µ)
∣∣2dxdµ,

Jb(θ) =
∫
M
∫
∂Ω

∣∣uθ(x,µ)∣∣2dxdµ,
with ωr and ωb are some weights.

uθ is a neural network, e.g. fully-connected NN.
(see example in 2D with 2 parameters)

x

y

µ1

µ2

x

µ

uθ

Monte-Carlo method: Discretize the cost functions by random process.
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Finite Element Method1

Variational Problem:

Find uh ∈ V0h such that, ∀vh ∈ V0h , a(uh, vh) = l(vh), (Ph)

with h the characteristic mesh size, a and l the bilinear and linear forms given by

a(uh, vh) =
∫
Ω

∇uh · ∇vh, l(vh) =
∫
Ω

f vh,

and V0h a continuous, piecewise polynomial space of degree k.

Linear system: Let (ϕ1, . . . , ϕNdofs) a basis of V0h .
Find U ∈ RNdofs such that

AU = b,

A =
(
a(ϕi, ϕj)

)
1≤i,j≤Ndofs

∈ RNdofs×Ndofs ,

b =
(
l(ϕj)

)
1≤j≤Ndofs

∈ RNdofs .

Cartesian mesh
1[Ern and Guermond, 2004]



LECOURTIER Frédérique
Enriching continuous Lagrange FE approximation spaces using NN

4/30

4/30

Introduction Classical approaches Enriched FEM using PINNs Numerical results Extension to non-linear problems Conclusion References

Finite Element Method1

Variational Problem:

Find uh ∈ V0h such that, ∀vh ∈ V0h , a(uh, vh) = l(vh), (Ph)

with h the characteristic mesh size, a and l the bilinear and linear forms given by

a(uh, vh) =
∫
Ω

∇uh · ∇vh, l(vh) =
∫
Ω

f vh,

and V0h a continuous, piecewise polynomial space of degree k.

Linear system: Let (ϕ1, . . . , ϕNdofs) a basis of V0h .
Find U ∈ RNdofs such that

AU = b,

A =
(
a(ϕi, ϕj)

)
1≤i,j≤Ndofs

∈ RNdofs×Ndofs ,

b =
(
l(ϕj)

)
1≤j≤Ndofs

∈ RNdofs .

Cartesian mesh
1[Ern and Guermond, 2004]



LECOURTIER Frédérique
Enriching continuous Lagrange FE approximation spaces using NN

4/30

4/30

Introduction Classical approaches Enriched FEM using PINNs Numerical results Extension to non-linear problems Conclusion References

Finite Element Method1
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Finite Element Method1
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Finite Element Method1
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Finite Element Method1

Variational Problem:

Find uh ∈ V0h such that, ∀vh ∈ V0h , a(uh, vh) = l(vh), (Ph)

with h the characteristic mesh size, a and l the bilinear and linear forms given by

a(uh, vh) =
∫
Ω

∇uh · ∇vh, l(vh) =
∫
Ω

f vh,

and V0h a continuous, piecewise polynomial space of degree k. (k = 3)

Linear system: Let (ϕ1, . . . , ϕNdofs) a basis of V0h .
Find U ∈ RNdofs such that
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A =
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a(ϕi, ϕj)

)
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b =
(
l(ϕj)

)
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Enriched finite element method
using PINNs
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Pipeline of the Enriched FEM

OFFLINE : PINN training

Inputs
x ∈ Ω : space coordinates
µ ∈ M : parameter Parametric PINN

Output
uθ(x,µ) : prediction of

the PDE solution u(x,µ)

ONLINE (fixedµ) : PINN evaluation + Enriched FEM resolution

PINN evaluation
uθ(·,µ) : prediction for
the given parameter µ FEM solver

enriched by uθ

Output
enriched FEM solution

(depending on the mesh size h)

Complete ONLINE process : quick + accurate
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Additive approach
Variational Problem: Let uθ ∈ Hk+1(Ω) ∩ H1

0(Ω) be a PINN prior.

Find C+h ∈ V0h such that, ∀vh ∈ V0h , a(C
+
h , vh) = l(vh)− a(uθ, vh), (P+

h )

with the enriched trial space V+h defined by

V+h =
{
u+h = uθ + C+h , C+h ∈ V0h

}
.

General Dirichlet BC: If u = g on ∂Ω, then

C+h = g− uθ on ∂Ω,

with uθ the PINN prior.

We expect that the modified problem will give the
same results as the standard one on

coarser meshes.

u
uθ

p+h

u
uθ
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Convergence analysis
Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote uh ∈ Vh the solution of (Ph) with Vh the standard trial space. Then,

∥u− uh∥L2 ⩽ CL2 h
k+1|u|Hk+1 .
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Convergence analysis
Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote uh ∈ Vh the solution of (Ph) with Vh the standard trial space. Then,

∥u− uh∥L2 ⩽ CL2 h
k+1|u|Hk+1 .

Theorem 2: Convergence analysis of the enriched FEM [Lecourtier et al., 2025]

We denote u+h ∈ V+h the solution of (P+
h ) with V+h the enriched trial space.

Then,

∥u− u+h ∥L2 ⩽ |u−uθ|Hk+1

|u|Hk+1

(
CL2 hk+1|u|Hk+1

)
.

|u−uθ|Hk+1

|u|Hk+1
< 1 ⇒ Gains of the additive approach.
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Numerical results
2D Poisson problem on Square - Dirichlet BC
3D Poisson problem on Cube - Dirichlet BC
2D Anisotropic Elliptic problem on Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC
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Problem considered
Problem statement: Consider the Poisson problem in 2D with Dirichlet BC:{

−∆u = f, in Ω×M,

u = 0, on ∂Ω×M,

withΩ = (−0.5π, 0.5π)2 andM = [−0.5, 0.5]2 (p = 2 parameters).

Analytical solution: µ = (µ1, µ2) ∈ M

u(x,µ) = exp
(
− (x− µ1)

2 + (y− µ2)
2

2

)
sin(2x) sin(2y).

Parametric PINN training:
MLP 5 layers (sine - 40, 60, 60, 60, 40); LBFGs optimizer (5000 epochs - 6000 col. pts).
Imposing the Dirichlet BC exactly in the PINN with the levelset φ defined by

φ(x) = (x+ 0.5π)(x− 0.5π)(y+ 0.5π)(y− 0.5π).
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Online phase - 1 parameters instance
µ(1) = (0.05, 0.22)

Error estimates in L2 norm:

2.96e-11.43e-17.05e-23.50e-21.74e-2
10−12

10−6

100

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3
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Online phase - 1 parameters instance
µ(1) = (0.05, 0.22)

Error estimates in L2 norm:

2.96e-11.43e-17.05e-23.50e-21.74e-2
10−12

10−6

100

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

e

Ndofs required to reach the same error e:

Ndofs

k e FEM Add

1 1 · 10−3 14 161 64

1 · 10−4 143 641 576

2 1 · 10−4 6 889 225

1 · 10−5 31 329 1 089

3 1 · 10−5 6 724 784

1 · 10−6 20 164 2 704

h ≈ N−1/2
dofs
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Numerical results
2D Poisson problem on Square - Dirichlet BC
3D Poisson problem on Cube - Dirichlet BC
2D Anisotropic Elliptic problem on Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC
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Problem considered
Problem statement: Consider the Poisson problem in 3D with Dirichlet BC:{

−∆u = f, in Ω×M,

u = 0, on ∂Ω×M,

withΩ = (−0.5π, 0.5π)3 andM = [−0.5, 0.5]3 (p = 3 parameters).

Analytical solution: µ = (µ1, µ2, µ3) ∈ M

u(x,µ) = exp

(
− (x− µ1)

2
+ (y− µ2)

2
+ (z− µ3)

2

2

)
sin(2x) sin(2y) sin(2z).

Parametric PINN training:
MLP 5 layers (tanh - 40, 60, 60, 60, 40); LBFGs optimizer (5000 epochs - 40000 col. pts).
Imposing the Dirichlet BC exactly in the PINN with the levelset φ defined by

φ(x) = (x+ 0.5π)(x− 0.5π)(y+ 0.5π)(y− 0.5π)(z+ 0.5π)(z− 0.5π).

Training time: 12 minutes on NVIDIA RTX 2000 (8GB VRAM).
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Online phase - 1 parameters instance I
µ(1) = (0.05, 0.22, 0.1)

Error estimates in L2 norm:

2.86
e-1

1.40
e-1

9.22
e-2

6.89
e-2

5.50
e-2

10−5

10−3

10−1

2

1

h

L2

FEM P1 Add P1
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Online phase - 1 parameters instance I
µ(1) = (0.05, 0.22, 0.1)

Error estimates in L2 norm:

2.86
e-1

1.40
e-1

9.22
e-2

6.89
e-2

5.50
e-2

10−5

10−3

10−1

2

1

h

L2

FEM P1 Add P1

L2 error w.r.t. online time∗:

10−1 100 101

10−5

10−3

10−1

Time (s)

L2

∗ mesh + assembly + solve
+ prior derivatives evaluation
+ training time
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Online phase - 1 parameters instance I
µ(1) = (0.05, 0.22, 0.1)

Error estimates in L2 norm:

2.86
e-1

1.40
e-1

9.22
e-2

6.89
e-2

5.50
e-2

10−5

10−3

10−1

2

1

h

L2

FEM P1 Add P1

e

L2 error w.r.t. online time∗:

10−1 100 101

10−5

10−3

10−1

Time (s)

L2

e

∗ mesh + assembly + solve
+ prior derivatives evaluation
+ training time
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Online phase - 1 parameters instance II
µ(1) = (0.05, 0.22, 0.1)

Ndofs and online time required to reach the same error e:

N Ndofs Online time∗

e FEM Add FEM Add FEM Add

1 · 10−3 152 12 3.51 · 106 1.73 · 103 (7.65 · 101) 5.2 · 10−2

1 · 10−4 484 39 1.13 · 108 5.93 · 104 (2.8 · 103) 9.26 · 10−1

1 · 10−5 1 539 122 3.65 · 109 1.82 · 106 (1.02 · 105) (5.26 · 101)

÷1471

Cartesian mesh: Ndofs = N3 nodes (P1 elements).

∗ The results in brackets are extrapolations.
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Online phase - 1 parameters instance II
µ(1) = (0.05, 0.22, 0.1)

Ndofs and online time required to reach the same error e:

N Ndofs Online time∗

e FEM Add FEM Add FEM Add

1 · 10−3 152 12 3.51 · 106 1.73 · 103 (7.65 · 101) 5.2 · 10−2

1 · 10−4 484 39 1.13 · 108 5.93 · 104 (2.8 · 103) 9.26 · 10−1

1 · 10−5 1 539 122 3.65 · 109 1.82 · 106 (1.02 · 105) (5.26 · 101)

÷1471

Cartesian mesh: Ndofs = N3 nodes (P1 elements).

∗ The results in brackets are extrapolations. "Training time !
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Parametric framework
Howmany parameters instance np are needed to balance training?

0 20 40

0

500

1 000

1 500

np

Time (s)

19

40

708

0 20 40

0

2 000

4 000

6 000

np

Time (s)

FEM P1

Add P1

Offline cost

5

98
708

To achieve e = 10−3 To achieve e = 5 · 10−4

Online: assembly + solve + prior derivatives evaluation
Offline: mesh + training time
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Numerical results
2D Poisson problem on Square - Dirichlet BC
3D Poisson problem on Cube - Dirichlet BC
2D Anisotropic Elliptic problem on Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC
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Problem considered
Problem statement: Considering an Anisotropic Elliptic problem with Dirichlet BC:{

−div(D∇u) = f, in Ω×M,

u = 0, on ∂Ω×M,

withΩ = (0, 1)2 andM = [0.4, 0.6]2 × [0.01, 1]× [0.1, 0.8] (p = 4 parameters).

Right-hand side and diffusion matrix: µ = (µ1, µ2, σ, ϵ) ∈ M

f(x,µ) = exp
(
− (x− µ1)

2 + (y− µ2)
2

0.025σ2

)
.

D(x,µ) =

(
ϵx2 + y2 (ϵ− 1)xy
(ϵ− 1)xy x2 + ϵy2

)
.

Parametric PINN training:
MLP1 5 layers (tanh - 40, 60, 60, 60, 40). Adam optimizer (15000 epochs - 8000 col. pts).
Imposing the Dirichlet BC exactly in the PINN with the a level-set function.

1with Fourier Features, Tancik et al. [2020]
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Online phase
Error estimates: 1 parameter instance

µ(1) = (0.51, 0.54, 0.52, 0.55)

9.43e-24.56e-22.24e-21.11e-25.55e-3
10−10

10−5

2
34
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h
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FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3
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Online phase
Error estimates: 1 parameter instance

µ(1) = (0.51, 0.54, 0.52, 0.55)

9.43e-24.56e-22.24e-21.11e-25.55e-3
10−10

10−5

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

Gains achieved: ∥u− uh∥L2/∥u− u+h ∥L2

Considering np = 50 parameters instances

S =
{
µ(1), . . . ,µ(np)

}
.

Gains in L2 rel error
of our method w.r.t. FEM

k min max mean

1 7.12 82.57 35.67

2 3.54 35.88 18.32

3 1.33 26.51 8.32

Cartesian mesh: N2 nodes with N = 20.
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Numerical solutions and errors
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h
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Absolute FEM error |u − uh|
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Absolute additive error |u − (uθ + C+
h )|

µ(2) = (0.46, 0.52, 0.05, 0.12) (k = 2,N = 16)
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Numerical results
2D Poisson problem on Square - Dirichlet BC
3D Poisson problem on Cube - Dirichlet BC
2D Anisotropic Elliptic problem on Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC
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Problem considered
Problem statement: Considering the Poisson problem with mixed BC:

−∆u = f, in Ω×M,

u = g, on ΓE ×M,
∂u
∂n

+ u = gR, on ΓI ×M,

withΩ = {(x, y) ∈ R2, 0.25 < x2 + y2 < 1} andM = [2.4, 2.6] (p = 1 parameter).

Analytical solution and boundary conditions: µ = µ1 ∈ M

u(x;µ) = 1−
ln
(
µ1

√
x2 + y2

)
ln(4)

,

g(x;µ) = 1− ln(µ1)

ln(4)
and gR(x;µ) = 2 +

4− ln(µ1)

ln(4)
.

Parametric PINN training:
MLP 5 layers (tanh - 5×40); LBFGs optimizer (4000 epochs - 6000 col. pts).
Imposing the mixed BC exactly in the PINN1 (+ Sobolev training).

1[Sukumar and Srivastava, 2022]
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Online phase
Error estimates: 1 parameters instance

µ(1) = 2.51

1.67e-18.70e-24.35e-22.20e-21.10e-2
10−11

10−6

10−1

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

Gains achieved: ∥u− uh∥L2/∥u− u+h ∥L2

Considering np = 50 parameters instances

S =
{
µ(1), . . . ,µ(np)

}
.

Gains in L2 rel error
of our method w.r.t. FEM

k min max mean

1 15.12 137.72 55.5

2 31 77.46 58.41

3 18.72 21.49 20.6

Mesh size: h = 1.33 · 10−1
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Numerical solutions and errors
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µ(1) = 2.51 (k = 1, h = 1.67 · 10−1)
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Extension to non-linear problems

Physics-Informed Neural Network (PINN)
Finite Element Method (FEM)
Enriched finite element method using PINNs



LECOURTIER Frédérique
Enriching continuous Lagrange FE approximation spaces using NN

20/30

20/30

Introduction Classical approaches Enriched FEM using PINNs Numerical results Extension to non-linear problems Conclusion References

Heated cavity test case1

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity):
We considerΩ = (−1, 1)2 a squared domain and ey = (0, 1).
Find the velocity u = (u1, u2), the pressure p and the temperature T such that

(u · ∇)u+∇p− ν∆u− g(βT+ 1)ey = 0 inΩ (momentum)

∇ · u = 0 inΩ (incompressibility)

u · ∇T− kf∆T = 0 inΩ (energy)

+ suitable BC

(P )

with g = 9.81 the gravity, β = 0.1 the expansion coefficient, ν = 0.01 the viscosity
and kf = 0.01 the thermal conductivity. (Rayleigh number: 156 960)

Boundary Conditions:
No-slip BC : u = 0 on ∂Ω Isothermal BC : T = 1 on the left wall (x = −1)

T = −1 on the right wall (x = 1)

Adiabatic BC :
∂T
∂n

= 0 on the top and bottom walls (y = ±1, denoted by Γad)

1Non-parametric study.
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Heated cavity test case1

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity):
We consider x = (x, y) ∈ Ω and ey = (0, 1).
Find U = (u, p, T) = (u1, u2, p, T) such that

Rmom(U; x,µ) = 0 inΩ (momentum)

Rinc(U; x,µ) = 0 inΩ (incompressibility)

Rener(U; x,µ) = 0 inΩ (energy)

(P )

with g = 9.81 the gravity, β = 0.1 the expansion coefficient, ν = 0.01 the viscosity
and kf = 0.01 the thermal conductivity. (Rayleigh number: 156 960)

Boundary Conditions:
No-slip BC : u = 0 on ∂Ω Isothermal BC : T = 1 on the left wall (x = −1)

T = −1 on the right wall (x = 1)

Adiabatic BC :
∂T
∂n

= 0 on the top and bottom walls (y = ±1, denoted by Γad)

1Non-parametric study.



LECOURTIER Frédérique
Enriching continuous Lagrange FE approximation spaces using NN

21/30

21/30

Introduction Classical approaches Enriched FEM using PINNs Numerical results Extension to non-linear problems Conclusion References

Extension to non-linear problems

Physics-Informed Neural Network (PINN)
Finite Element Method (FEM)
Enriched finite element method using PINNs
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Neural Network considered
We consider a non-parametric NN with 2 inputs and 4 outputs, defined by

Uθ(x) =
(
u1,θ, u2,θ, pθ, Tθ)(x).

The Dirichlet boundary conditions are imposed on the outputs of the MLP by a
post-processing step. [Sukumar and Srivastava, 2022]

x

y

x

ũ1,θ

ũ2,θ

p̃θ

T̃θ

×φ1 u1,θ

×φ1 u2,θ

pθ

×φ2 +g Tθ

u1,θ = 0 on ∂Ω

u2,θ = 0 on ∂Ω

Tθ =

{
1 for x = −1

−1 for x = 1

We consider two levelsets functions φ1 and φ2, and the linear function g defined by

φ1(x, y) = (x− 1)(x+ 1)(y− 1)(y+ 1),

φ2(x, y) = (x− 1)(x+ 1) and g(x, y) = 1− (x+ 1).
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PINN training
Approximate the solution of (P ) by a PINN : Find the optimal weights θ⋆, such that

θ⋆ = argmin
θ

(
Jinc(θ) + Jmom(θ) + Jener(θ) + Jad(θ)

)
, (Pθ)

where the different cost functions1 are defined by

adiabatic condition

3 residual losses

Jad(θ) =
∫
M
∫
Γad

∣∣∂Tθ(x,µ)
∂n

∣∣2dxdµ,
J•(θ) =

∫
M
∫
Ω

∣∣R•(Uθ(x,µ); x,µ)
∣∣2dxdµ,

with Uθ the non-parametric NN and • the PDE considered (i.e. inc,mom or ener).

Network - MLP
layers 40, 60, 60, 60, 40

σ sine

Training (ADAM / LBFGs)
lr 7e-3 Ncol 40000

nepochs 10000 Nbc 30000

+ some weights to balance the different losses.

1Discretized by a random process using Monte-Carlo method.
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Non parametric PINN prediction

Prediction:

u1,θ u2,θ Tθ

Error map1:

u1,ref − u1,θ u2,ref − u2,θ Tref − Tθ

L2 error:
(relative) 7.60× 10−2 5.38× 10−2 9.63× 10−2

1Reference solution computed by FEM on an over-refined mesh.
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Extension to non-linear problems

Physics-Informed Neural Network (PINN)
Finite Element Method (FEM)
Enriched finite element method using PINNs
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Discrete variational formulation
We consider a mixed finite element space Mh = [V 0

h ]
2 × Qh × Wh (4 unknowns).

Variational Problem: Find Uh = (uh, ph, Th) ∈ Mh s.t., ∀(vh, qh,wh) ∈ M 0
h ,∫

Ω
(uh · ∇)uh · vh dx+ µ

∫
Ω
∇uh : ∇vh dx

−
∫
Ω

ph ∇ · vh dx− g
∫
Ω
(1 + βTh)ey · vh dx = 0, (momentum)∫

Ω
qh ∇ · uh dx + 10−4

∫
Ω

qh ph dx = 0, (incompressibility + pressure penalization)∫
Ω
(uh · ∇Th)wh dx+

∫
Ω

kf∇Th · ∇wh dx = 0, (energy)

(Ph)
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Discrete variational formulation
We consider a mixed finite element space Mh = [V 0

h ]
2 × Qh × Wh (4 unknowns).

Variational Problem: Find Uh = (uh, ph, Th) ∈ Mh s.t., ∀(vh, qh,wh) ∈ M 0
h ,∫

Ω
(uh · ∇)uh · vh dx+ µ

∫
Ω
∇uh : ∇vh dx

−
∫
Ω

ph ∇ · vh dx− g
∫
Ω
(1 + βTh)ey · vh dx = 0, (momentum)∫

Ω
qh ∇ · uh dx + 10−4

∫
Ω

qh ph dx = 0, (incompressibility + pressure penalization)∫
Ω
(uh · ∇Th)wh dx+

∫
Ω

kf∇Th · ∇wh dx = 0, (energy)

(Ph)

Non-linear terms ⇒ Non-linear system to solve.
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Newton method
Denoting Ndofs the dimension of Mh, we want to solve the-non linear system:

F(U⃗) = 0

with F : RNdofs → RNdofs the non-linear operator associated to (Ph) and U⃗ ∈ RNdofs the
unknown vector.

Algorithm 1: Newton algorithm

Initialization step: set U⃗(0) = U⃗0;
for n ≥ 0 do

Solve the linear system F(U⃗(n)) + F′(U⃗(n))δ(n+1) = 0 for δ(n+1);

Update U⃗(n+1) = U⃗(n) + δ(n+1);
end

" The choice of the U⃗0 is crucial for the convergence of the Newton method.
Solution: Continuation method where we progressively increase the non-linearity of the

problem.
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Newton method
Denoting Ndofs the dimension of Mh, we want to solve the-non linear system:

F(U⃗) = 0

with F : RNdofs → RNdofs the non-linear operator associated to (Ph) and U⃗ ∈ RNdofs the
unknown vector.

Algorithm 1: Newton algorithm

Initialization step: set U⃗(0) = U⃗0;
for n ≥ 0 do

Solve the linear system F(U⃗(n)) + F′(U⃗(n))δ(n+1) = 0 for δ(n+1);

Update U⃗(n+1) = U⃗(n) + δ(n+1);
end

" The choice of the U⃗0 is crucial for the convergence of the Newton method.
Solution: Continuation method where we progressively increase the non-linearity of the

problem.
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Extension to non-linear problems

Physics-Informed Neural Network (PINN)
Finite Element Method (FEM)
Enriched finite element method using PINNs
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Additive approach
Considering the PINN prior Uθ = (uθ, pθ, Tθ), we define the mixed finite element
space additively enriched by the PINN as follows:

M+
h =

{
U+
h = Uθ + C+h , C+h ∈ M 0

h

}
with M 0

h = [V 0
h ]

2 × Qh × W0
h , U

+
h = (u+h , p

+
h , T

+
h ) ∈ M+

h and C+h = (C+h,u, C
+
h,p, C

+
h,T).

We can then define the three finite element subspaces of M+
h as follows:

V+h =
{
u+h = uθ + C+h,u, C+h,u ∈ [V 0

h ]
2
}
,

Q+
h =

{
p+h = pθ + C+h,p, C+h,p ∈ Qh

}
,

W+
h =

{
T+h = Tθ + C+h,T, C+h,T ∈ W 0

h

}
,

where C+h,u, C
+
h,p and C+h,T becomes the unknowns.

C+
h

U
Uθ
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Modified variational formulation
Weak problem : Find C+h = (C+h,u, C

+
h,p, C

+
h,T) ∈ M 0

h s.t., ∀(vh, qh,wh) ∈ M 0
h ,∫

Ω

[
(uθ · ∇)uθ + (uθ · ∇)C+h,u + (C+h,u · ∇)uθ + (C+h,u · ∇)C+h,u

]
· vh dx

+ µ

(∫
Ω
∇uθ : ∇vh dx+

∫
Ω
∇C+h,u : ∇vh dx

)
+

(∫
Ω
∇pθ · vh dx−

∫
Ω

C+h,p∇ · vh dx
)

− g
∫
Ω
(1 + β(Tθ + C+h,T))ey · vh dx = 0, (momentum)∫

Ω
qh

[
∇ · uθ +∇ · C+h,u

]
dx + 10−4

∫
Ω

qh (pθ + C+h,p) dx = 0, (incompressibility + penal)∫
Ω

[
uθ · ∇Tθ + uθ · ∇C+h,T + C+h,u · ∇Tθ + C+h,u · ∇C+h,T

]
wh dx

+ kf

(∫
Ω
∇Tθ · ∇wh dx+

∫
Ω
∇C+h,T · ∇wh dxwh ds

)
= 0, (energy)

(P+
h )

with Uθ = (uθ, pθ, Tθ) the PINN prior and some modified boundary conditions.
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Newton method - Additive approach
Denoting Ndofs the dimension of M+

h , we want to solve the non-linear system:

Fθ (⃗C) = 0

with Fθ : RNdofs → RNdofs the non linear operator associated to the weak problem (P+
h )

and C⃗ ∈ RNdofs the correction vector (unknown).

Algorithm 2: Newton algorithm

Initialization step: set C⃗(0) = 0;
for n ≥ 0 do

Solve the linear system Fθ (⃗C(n)) + F′θ (⃗C
(n))δ(n+1) = 0 for δ(n+1);

Update C⃗(n+1) = C⃗(n) + δ(n+1);
end
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Numerical results
Ndofs and online time required to reach the same error e:

10−1 100 101

10−5

10−3

10−1

Time (s)

ΣL2

FEM P1

Add P1

Ndofs Online time

e FEM Add FEM Add

1 · 10−3 33 204 13 764 1.29 0.31

1 · 10−4 150 339 70 303 4.76 1.78

1 · 10−5 690 924 339 231 20.34 6.42
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Conclusion
• Offline/online framework:

– Offline phase: Training a PINN over a parametric space.
– Online phase: (fixed parameter instance)

Quick and accurate resolution of the FEM correction problem using the PINN prior.

• Numerical results: Several parametrics PDEs.

• Extension to non-linear problems :
First promising results for the incompressible Navier-Stokes equations.

Perspectives:

• Improve Navier-Stokes results:
– Improved parametric PINN training.
– Different meshes by unknowns (+ parameter

dependency).

• Extend the approach to more complex
geometries.
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