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Scientific context

Context : Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid / neural network | method.
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Heated cavity test case

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity)' :
We consider 2 = [—1,1]? a squared domain and e, = (0, 1).
Find the velocity u = (u1, us), the pressure p and the temperature T such that

(u-V)u+Vp—vAu—g(BT+1)e,=0 inQ  (momentum)

V-u=0 inQ (incompressibility) )
u- Vi —kAT=0 in§) (energy)
+ suitable BC

with g = 9.81 the gravity, 5 = 0.1 the expansion coefficient, v the viscosity and ks the
thermal conductivity. [Coulaud et al., 2024]

"The approach will be shown on this example, but can be extended to other test cases.
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Heated cavity test case

Objective: Simulation on a range of parameters u = (1, k;) € M = [0.01,0.1]2.

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity) :
We consider x = (x,y) € Qand e, = (0, 1).
Find U = (u7p? T) - (ula Uz, p, T) such that

Rmom (U; %, 1) = 0 in (momentum)
Rinc(U; %, 1) = 0 in Q (incompressibility)
Rener(U; x, 1) = 0 in Q (energy)

+ suitable BC

with g = 9.81 the gravity, 5 = 0.1 the expansion coefficient, v the viscosity and ks the
thermal conductivity. [Coulaud et al., 2024]

LECOURTIER Frédérique
2/21 Enriching continuous Lagrange FE approximation spaces using NN



Introduction Parametric PINN Finite element method (FEM) Enriched finite element method using PINN Numerical results Conclusion References

oeo

0000 0000 O 000 0000 0000000

Heated cavity test case

Objective: Simulation on a range of parameters u = (1, k;) € M = [0.01,0.1]2.

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity) :
We consider x = (x,y) € Qand e, = (0, 1).
FindU = (u,p, T) = (u1, us,p, T) such that
Rmom (U; x, ) = 0 in Q (momentum)
Rine(U; x, ) = 0 in Q (incompressibility) (P)
Rener(U;xa IJ‘) =0 inQ (energy)
with g = 9.81 the gravity, 8 = 0.1 the expansion coefficient, v the viscosity and k; the
thermal conductivity. [Coulaud et al., 2024]

Boundary Conditions:
No-slip BC: u = 0 on 05} Isothermal BC: T = 1 on the left wall (x = —1)
T= —1ontherightwall (x = 1)

. . oT
Adiabatic BC: = 0 on the top and bottom walls (y = %1, denoted by I';4)
n
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Evaluate quality of solutions

In the following, we are interested in three parameters (rising in complexity) :
p™ =(0.1,0.1), u® = (0.05,0.05) and u® = (0.01,0.01)

We evaluate the quality of solutions by comparing them to a reference solution.’

'Computed on an over-refined mesh (h = 7.1073)on a P2 x Py x P3 continuous Lagrange FE space.

LECOURTIER Frédérique
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Evaluate quality of solutions

In the following, we are interested in three parameters (rising in complexity) :
™ =(0.1,0.1), u® = (0.05,0.05) and u® = (0.01,0.01)
We evaluate the quality of solutions by comparing them to a reference solution.’

Reference solution - Rayleigh number: Ra = 1569.6

U1 ref U2 ref Pref Tres

e 8005 1500l _2e0)  2Tegl tlieQl 54004 licQl 701 1000l i) 60002 52000 j0ei0l  -10si0 lo0o0l 00000 6000l 1000
- . m L L - S m

1Computed on an over-refined mesh (h = 7.10*3) ona IP’% X IPo x IP3 continuous Lagrange FE space.
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Evaluate quality of solutions

In the following, we are interested in three parameters (rising in complexity) :
p™® = (0.1,0.1), u® = (0.05,0.05) and u® = (0.01,0.01)
We evaluate the quality of solutions by comparing them to a reference solution.’

Reference solution - Rayleigh number: Ra = 6 278.4

U1 ref U2 ref Pref Tres

32601 16601 22004 1660l 32601 37601 19601 72004 19e01 37601 100401 490+00 15601 526400 10+01 108400 50601 006400 50e01 10400
L - - - . - | - . m

1Computed on an over-refined mesh (h = 7.10*3) ona IP’% X IPo x IP3 continuous Lagrange FE space.
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Evaluate quality of solutions

In the following, we are interested in three parameters (rising in complexity) :
p™® = (0.1,0.1), u® = (0.05,0.05) and p*) = (0.01,0.01)
We evaluate the quality of solutions by comparing them to a reference solution.”

Reference solution - Rayleigh number: Ra = 156 960

U2 ref Pref

25601 12601 14603 13e0] 25601  44e0] 22601 16603 22601 45601  97e:00 48e+00 22601 526400 10e:01 10600 50601 00e+00 50e01 10400
- . m L - - - - . m

1Computed on an over-refined mesh (h = 7.10_3) ona IP’§ X IPo x IP3 continuous Lagrange FE space.
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The PINN is parametrized by the @t parameter.
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Neural Network considered

We consider a parametric NN with 4 inputs and 4 outputs, defined by

Up(x, ) = (U1,97U2,9,P9, To)(x, p1).

The Dirichlet boundary conditions are imposed on the outputs of the MLP by a
post-processing step. [Sukumar and Srivastava, 2022]

u19 =0 on 0N

U9 = 0 on )

1 forx=-1
Xpg — +¢ Ty | Ty =
w / g {l forz=1

References

We consider two levelsets functions ¢ and 3, and the linear function g defined by

prixy) ==+ D - +1
pa(x,y) = (x=1)(x+1) and gly) =1—(x+1).

LECOURTIER Frédérique
4/21 Enriching continuous Lagrange FE approximation spaces using NN



Introduction Parametric PINN Finite element method (FEM) Enriched finite element method using PINN Numerical results Conclusion References
000 ooeo 0000 O OO0 0000 0000000

PINN training
Approximate the solution of (P) by a PINN : Find the optimal weights 6*, such that
¢* = argmin ( + + +Joa(0) ), (Po)
0

where the different cost functions are defined by

adiabatic condition Jaa(0) = [y frd |6T9(X“ } dxde,

J(0) = [ Joy [R(Up (%, 1) x, )| el

with Ug the parametric NN and ¢ the PDE considered (i.e. inc, mom or ener).

loss history

—— total loss
incomp

Network - MLP Training (ADAM / LBFGs) - mz;
.
layers 40,60, 60, 60, 40 Ir 7e-3 40000 * o
- sine Mepochs 10000 Ny 30000 b

W\’ Weme

0 2000 4000 6000 8000 10000

"Discretized by a random process using Monte-Carlo method.
LECOURTIER Frédérique
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Prediction on p") = (0.1,0.1)

uz,0

Prediction :

-2.7e-01 -1.4e-01 -3.6e-04 1.3e-01 2.76-01 -2.8e-01 -1.4e-01 -4.2e-03 1.3e-01 2.7e-01 -1.0e+00 __5.0e-01 0.0e+00 50e-01 1.0e+00
Utref — U1,0 U2 ref — U209 Tret — Tp

Error map :

|

61e-03 23603 16e-03 54e-03 9.2e-03 36603 _-20e-04 32603 aaeoa 1.06-02 '8603 84003 19002 2“602 3902
- S m -

L2 error: 2.98 x 1072 3.17 x 1072 3.90 x 1072

(relative)
LECOURTIER Frédérique
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Finite element method (FEM)

The p parameter is fixed in the FE resolution.
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Discrete weak formulation

We consider a mixed finite element space ‘M,, = [VY]% x Qy x W, ‘ and

012 1 2 .
Un € [Vh ] . [H%(Q)] ’ ]Pz } (Taylor-Hood spaces)
bn € Qn C L (Q) Py
Th € Wh C w . PQ

with W= {w € H'(9), whe 1 = 1, whey = —1}.
Weak problem : Find U, = (uy, pp, Ts) € My s.t., ¥ (v, gy, wy) € M2,

/(uh-V)uh-vhdx+/J,/ Vup : Vv, dx
Q Q

—/ on V- vy dx—g/ (1+ BTh)ey - vpdx =0, (momentum)
Q Q Pn)

/ gn V - updx + 107 / gnpndx =0, (incompressibility + pressure penalization)
Q Q
/ (uh . VTh) wh dx + / k/VTh - Vw,dx =0, (energy)

Q Q

where M2 = [V0]2 x Qn x WO with w0 C {w € H'[Q], w|x=+1 = 0}.

LECOURTIER Frédérique
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Newton method

We consider the following three parameters:
p® =(0.1,0.1), n® = (0.05,0.05) and > = (0.01,0.01).
Denoting Nj, the dimension of M, we want to solve the non linear system:
F(Uy) =0
with £ : R — R™ a non linear operator and U, € R™ the unknown vector
associated to the k-th parameter [,L(k) k=1,2,3).

Algorithm 1: Newton algorithm

Initialization step: set U/E ) = Uk o;

forn > 0 do
Solve the linear system F(0{") + F (T{")s{"™") = 0 for 6"");
Update Ui"H) = ﬂ,((w + 5k("+1),

end

LECOURTIER Frédérique
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We consider the following three parameters:
p® =(0.1,0.1), n® = (0.05,0.05) and > = (0.01,0.01).
Denoting Nj, the dimension of M, we want to solve the non linear system:
F(Uy) =0
with £ : R — R™ a non linear operator and U, € R™ the unknown vector
associated to the k-th parameter [,L(k) k=1,2,3).

Algorithm 1: Newton algorithm

Initialization step: set 17150) = UK,(J;

forn > 0 do
Solve the linear system F(0{") + F (T{")s{"™") = 0 for 6"");
Update U£"+l) = U,((” —+ 5k("+1);

end

How to initialize the Newton solver?

LECOURTIER Frédérique
8/21 Enriching continuous Lagrange FE approximation spaces using NN



* Natural :
* PINN:

* Continuation method:
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3 types of initialization

+ Natural : Using constant or linear function.
Considering a fixed parameter with k € {1, 2, 3}, we can use the following
initialization:
Uk,O = (Oa 07 07 TO)
where fori=1,...,dim(W,),
(To) = g(x) =1 - (x + 1)
with x) = (x(), (0} the i-th dofs coordinates of Wj.
* PINN:

+ Continuation method:

LECOURTIER Frédérique
9/21 Enriching continuous Lagrange FE approximation spaces using NN



Introduction Parametric PINN Finite element method (FEM) Enriched finite element method using PINN Numerical results Conclusion References
[e]e]e} 0000 [eJe]e] ] O 000 0000 0000000

3 types of initialization

+ Natural : Using constant or linear function.

* PINN : Using PINN prediction.
(UNet: [Odot et al., 2021]; FNO : [Aghili et al., 2025])
Considering a fixed parameter with k € {1, 2, 3}, we can use the following
initialization fori = 1,..., Ny,

(Uc0), = Us (), u)

with x() = (x(’),y(f)) the i-th dofs coordinates of M, and Ug the PINN.

* Continuation method:

LECOURTIER Frédérique
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3 types of initialization

+ Natural : Using constant or linear function.

* PINN : Using PINN prediction.
(UNet: [Odot et al., 2021]; FNO : [Aghili et al., 2025])

+ Continuation method : Using a coarse FE solution of a simpler parameter.

9/21

We consider a fixed parameter with k € {2, 3}.

We consider a coarse grid (16 x 16 grid) and compute the FE solution of (Py) for
the parameter ,u(k_l).

We interpolate the coarse solution to the current mesh.

We use it as an initialization for the Newton method, i.e.

Uko = (kah Vk—1, Pk—1, kal)

where Gy_1, Vi1, Px—1 and Ty—1 are the FE solutions for the parameter g~ 1.

LECOURTIER Frédérique
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The heated cavity test case considered
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What is the purpose of enrichment?
Poisson problem (with Dirichlet BC): Find u : €2 — R such that
—Au=f, inQ,
u=0, on 09Q.

Variational Problem : We consider \/2 a [P, continuous Lagrange FE space (k > 1).
Findu, € v2 such that, Vv, € vﬁ, a(un,vn) = I(vp), (Pr)

with h the characteristic mesh size, a and / the associated bilinear and linear forms.

LECOURTIER Frédérique
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What is the purpose of enrichment?

Poisson problem (with Dirichlet BC): Find u : €2 — R such that

—Au=f, inQ,
u=0, on 9N.

Variational Problem : We consider V2 a [P, continuous Lagrange FE space (k > 1).
Find u, € VS such that, Vv, € \/2, a(up,v) = I(vy), (Pr)

with h the characteristic mesh size, a and / the associated bilinear and linear forms.
Modified variational Problem : Let uy be a PINN prediction.

Find ", € V2 such that, Vv, € V2, a(Cth, vi) = I(vy)—a(ug, vi), P
with the enriched trial space \fhF defined by

Vi ={uf =uwe+cf,, ¢, ev}.

LECOURTIER Frédérique
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What is the purpose of enrichment?

Modified variational Problem : Let uy be a PINN prediction.

Conclusion
(e}

Find Chfu € W such that, Yy, € V2, a(C,J,fu, vp) = I(vn)—a(ug, i),

with the enriched trial space V,T defined by

10/21

_ + _ + +
V;r = {Uh =up+ Gy Gy € Vf(;)}
e
3 A
"_' s
."". // ......... ’LL@
"o, v .
v, + -
S Citl
......... Uug %./ AN

We hope that the modified problem will give the same results
as the standard one on coarser meshes.

References

P;H
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Convergence analysis

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote u, € V,, the solution of (Py) with Vj, the standard trial space. Then,

0000

|U = uh|H1 < G hk|u|,_,k+1,

llu = upllz < C2 WY ulperr .

References

Then,

lu—uf | <

lu = up ez <

|lu—ug | ut1
[ul et1

lu—ug | p+1

[ul 1

Theorem 2: Convergence analysis of the enriched FEM [F. Lecourtier et al., 2025]

We denote u,',*' € V,T the solution of (P,;") with V,f,r the enriched trial space.

(CHI hk|U|Hk+1) 5

(CLz pktt |U|Hk+1) .

J

Gains of the additive approach.

11/21
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Enriched space using PINN

Considering the PINN prior Ug = (ug, pg, Tp), we define the mixed finite element
space additively enriched by the PINN as follows:

with M? = [VO]2 x Qy x W), U = (uf ,pf, ) € M and G = (¢f,, G, G ).

We can then define the three finite element subspaces of M,'f as follows:

072
Vi ={uf =w+cf,, ¢, €W}, -
Q= {p =po+ Gl Gy € Qi) __ Us
wi ={1r =To+ ¢l ¢ ewl}, G
where C,;'ju, C,','fp and C,T,T becomes the unknowns.

LECOURTIER Frédérique
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Weak formulation - Additive approach
Weak problem : Find ¢/ = (C, .G/ ,, G 1) € M0 s.t, V(v gp, wy) € MY,
»/Q [(ue ’ V)UG + (u9 : V)Chv.u + (Chv.u ’ )llg + ( hu* v)c/v‘.u] * vh dx

+u(/ Vug : Vv dx + VC;U:Vvhdx)-i—(/ Vpg-vhdx—/C;rpV.vhdx)
Q Q ’ Q Q

— g/ (14 B(To + C; 1))ey - v dx = 0, (momentum)
e Py
an [V ug+V-c, ]dx + 1074/ gn (po + C,Tp) dx = 0, (incompressibility + penal)
o ,

:)\o\

[ug - VTy +ug - VG +¢), - VTg 4+, -V Jwyax
+ kf (/ VTy - Vwy dx + / VCL - Vwy dxwp, ds) = 0, (energy)
Q Q

with Ug = (ug, pg, Tp) the PINN prior and some modified boundary conditions.

LECOURTIER Frédérique
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Newton method - Additive approach

We want to solve the non linear system:

F@(E) =0
with Fg : R™ — RM the non linear operator associated to the weak problem (7,")
and C € RM the correction vector (unknown).

Algorithm 2: Newton algorithm [Aghili et al., 2025]

Initialization step: set ¢ —q;

forn > 0do
Solve the linear system Fg (C") + Fy (C™)5 ) = 0 for 6 +1);
Update ¢t = ¢ 4 s(n+1).

end

Advantage compared to PINN initialization':
Ug is not required to live in the same discrete space as C,T.

"Taking Ug and C,']" in the same space, additive approach is exactly the same as the PINN initialization.

LECOURTIER Frédérique
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Numerical results

+ Results obtained with a laptop GPU.
« The newton solver is the same for all methods (rtol= 10~*°, atol= 107°, max_it= 30).

- Additive approach : we consider ug in a P3 x Py x P3 continuous Lagrange FE space
(defined on the current mesh).
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Error estimates 11

p®. U1 L
1072 1072
1073 1073
074 1074y
T o
1079 1075
10-6 Ag 10-6

0.022  0.045 0.091 0,189h 0.022  0.045 0.091 []4189h 0.022  0.045 0.091 (]A189h

++ Std - Natural init (X) = Std - Continuation (5)  -*-Std - PINN init (5)  # Additive (5) ‘

uie uz.0 To

Prediction :

-386:01 _-1.9¢01 77604 19601 _38c.01 58001 29001 47603 28601 _57e01 o e
L2 error: 5.75 x 1071 4.89 x 107! 2.57 x 1071

(relative)
LECOURTIER Frédérique
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Defining the global error as the sum of the L2 relatives errors on u and T.

p = (0.1,0.1)

1 = (0.05,0.05)

) = (0.01,0.01)

$L? XL XL
NG . -
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- I -
—4 . .
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_5 s .
10 D w 10 e Lot
10-6 “m . “m .
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[# Std - Natural init __-# Std - Continuation - Std - PINN init___-B- Additive |
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Numerical costs
p = (0.1,0.1)

t
107! 10" 10!
‘ Std - Natural init & Std - Continuation & Std - PINN init -B- Additive

Ngofs and execution time required to reach the same global L2 relative error e :

Std vs Add Number of DoFs Execution times
e Std Add (nat) (PINN) Add
1-1073 6,031 2,044 0.32 0.16 0.16
1-107* 26,959 10,588 0.99 0.48 0.23
1-107° 121,156 49,231 4.21 1.75 0.96

—25—7 \\*27
<4
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Enriched finite element method using PINN
O00@000

Finite element method (FEM)
O 000 0000

Introduction Parametric PINN
[e]e]e} 0000 0000

Numerical costs
1 = (0.05,0.05)

$L?
1073
107
T €
107
- t
107! 10° 10!
& Std - PINN init B Additive

Std - Natural init & Std - Continuation

Ngofs and execution time required to reach the same global L relative error e :

Std vs Add Number of DoFs Execution times
e Std Add (nat) (cont) (PINN) Add
1-1073 7,828 2,748 0.58 0.39 0.19 0.24
1-1074 35,884 14,623 1.95 1.14 0.8 0.32
1-107° 167,583 70,303 9.39 4.16 3.4 1.59

=T —
+2.5
=6
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[e]e]e} 0000 0000 O 000 0000 O00@000

Numerical costs
p® = (0.01,0.01)

$L?

1072

1073

1071

t
107! 10° 10!
‘ Std - Natural init & Std - Continuation & Std - PINN init -B- Additive

Ngofs and execution time required to reach the same global L relative error e :

Std vs Add Number of DoF's Execution times
e Std Add (nat) (cont) (PINN) Add
1-1073 33,204 23,524 X 1.29 0.96 0.91
1-107% 150,339 108,931 X 4.76 4.67 3.65
1-107° 690,924 502,156 X 20.34 23.3 17.23
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000 0000 0000 O 000 0000 0000e00 (e}

Non parametric PINN' for ;%)

ui,e usz.e

Prediction :

22601 99e02 19e02 14e01 _ 26e01 -43e01 21601 12602 23601 46601 100400 50e-01 00e+00  50e-01 10400
-_— - - ] — |
Ul,ref — U1,0 U2 ref — U2,6 Tt — To

Error map:

L2 error : 41e02 26202 11602 39e03 19202 35602 22002 8603 4de03 17602 2 O e 02
(relative) 7.60 x 1072 5.38 x 1072 9.63 x 1072

"We consider exactly the same architecture, but this time we train the PINN non-parametrically.
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000 0000 0000 (e}

O 000 0000 0000080

Error estimates on p®)

12 uy 2 uz 12 T
1072 1072 1072
(%)
= 1073 1073 103
=]
Q 1074 1074 1074
1 5 - 5
© 1075 1075 1075
s
2 1076 1076 1076
L L h
0.022  0.045 0091 0189 0022 0045 0091 0189 0022 0045 0.091 0.189
‘ Std - Natural init (X)  -& Std - Continuation (5) -+~ Std - PINN init (5)  # Additive (5) ‘
2 U1 12 U2 12 T
(%) - » -
= 1072 1072 1072 =
= ) ] P
Q 1073 1073 1073
£ »
© 10 107 10 T
- i s i P
S 10°° 1075 10734 ,
[ — |
[ 1076 1076 106" T
=4 h h h
2 0.022  0.045 0.091  0.189 0.022  0.045 0091 0.189 0.022  0.045 0.091  0.189

Std - Natural init (X) -5 Std - Continuation (5)  -=-Std - PINN init (3)  # Additive (3) ‘
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Enriched finite element method using PINN
O00000e

Finite element method (FEM)
O 000 0000

Introduction Parametric PINN
[e]e]e} 0000 0000

Numerical costs on p®)

Parametric Non-Parametric

SL?

1072

1073

1074

t
10 10°! 10° 10

& Std - PINN init 8- Additive

10! 10°

‘ Std - Natural init & Std - Continuation

Ngofs and execution time required to reach the same global L relative error e ;
Execution times
(PINN) (PINN)+ Add Add+
0.96 0.56 0.91 0.31

Number of DoFs
e (PINN) Add Add+

1-1073 33,204 23,524 13,764

1-1074 150,339 108,931 70,303 4.67 2.82 3.65 1.78

1-107° 690,924 502,156 339,231 23.3 13.84 17.23 6.42
~ . —7 ~ .5
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Conclusion

+ The enriched approach provides the same results as the standard FEM method,
but with coarser meshes.
= Reduction of the computational cost : DoFs, iterations, execution times.

+ Theory on linear problems shows that it's the derivatives of the prior that are
the most crucial.
= PINNs are good candidates for the enriched approach.

* The gains obtained on linear problems were much higher.
= Improved training of parametric PINN (or Neural Operators).

]
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Appendix 1: FEM Appendix 2 : PINN Initialization / Additive approach Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training
00000 0000

A1 — Construction of the unknown vector

Considering (¢}, (1@)/ 1 and ()=, the basis functions of the finite element
spaces VhO, Qp and W, respectively, we can write the discrete solutions as:

Ny
up(x) = Zl (5:) ¢i(x),  pn(x Zpﬂl)f and  Th(x Z Tk (x
i=

with the unknown vectors for velocity, pressure and temperature defined by

= (u,)ll_\l:“1 eRM V= (v,-)f/:”1 € RM,
p=(p);, €R" and 7= (T,),_, € RV
Considering N, = 2N, + N, + Ny, we can define the global vector of unknowns as:
U= (d,v,p,7) € R™.

and F : RM — RM the nonlinear operator associated to the weak formulation (P}).
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Appendix 1: FEM Appendix 2 : PINN Initialization / Additive approach Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training
00000 0000

A2 — Comparison of the 2 approaches

Taking Ug and C,‘f in the same space, we have :
Fo(C) = F(Up + O),

with C the correction vector and Ue the PINN vector (PINN evaluation at the dofs),
both of size N.
The first iteration of the additive approach :

(C(O))+F’( ) s —p

becomes (as c® = 0):
F(ag) + F’(ag)(s(l) =0,

which is equivalent as the standard method with the PINN initialization.
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Appendix 1: FEM Appendix 2 : PINN Initialization / Additive approach Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training
0®000 0000

A3 — Problem considered

Problem statement: Consider the Poisson problem with Dirichlet BC:
—Au=f in Qx M,
{ u=0, on 90 x M,
with Q = [—0.57,0.57]2 and M = [—0.5,0.5]% (p = 2 parameters).

Analytical solution :

u(x, ) = exp (- (= pm)” ;L = “2)2> sin(2¢) sin(2y).

PINN training: MLP of 5 layers; LBFGs optimizer (5000 epochs).
Imposing the Dirichlet BC exactly in the PINN with the levelset ¢ defined by

o(x) = (x + 0.5m)(x — 0.57)(y + 0.57) (y — 0.57).

Training time : less than 1 hour on a laptop GPU.
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Error estimates : 1 set of parameters.

p = (0.05,0.22)

10122 : h
1.74e-2 3.50e-2 7.05e-2 1.43e-1 2.96e-1

-8 FEMP; —e— FEMP; —— FEM P3
-m- AddP; -e- AddP; -4 - Add P3




Appendix 1: FEM Appendix 2 : PINN Initialization / Additive approach Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training
00 00 00000 0000

A3 — Numerical results

Error estimates : 1 set of parameters. Gains achieved : n, = 50 sets of parameters.

S — {H(1>7m7#<np>}

Gains in L rel error
of our method w.r.t. FEM

p = (0.05,0.22)

L2
100 4

min max mean
134.32 377.36 269.39
2 67.02 164.65 134.85
3 39.52 72.65 61.55

1012 i i i — h

1.74e-2 3.50e-2 7.05e-2 1.43e-1 2.96e-1 N=20

- +
~# FEMP; —— FEMP, — FEM P Gain: [ju — unl|i2/|lu — uy |2
-m- AddP; -e- Add Py -4 - Add P3

Cartesian mesh : N? nodes.
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Appendix 1: FEM Appendix 2 : PINN Initialization / Additive approach Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training
o] 0000e 0000

A3 — Numerical results

Error estimates : 1 set of parameters. Nyofs required to reach the same error e :

p = (0.05,0.22)

L2 s
1004 k e FEM Add

-107% 14,161 64
-107* 143,641 576

.107% 6,889 225
21075 31,329 1,089

.107°% 6,724 784
-107% 20,164 2,704

Ndofs

n
e =

_

107 12— : : : — h
1.74e-2 3.50e-2 7.05e-2 1.43e-1 2.96e-1

-8 FEMPP; —e— FEM Py —— FEM P3
-m- AddP; -e- Add Py -4 - Add P3
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endix 1: FEM ; enm 2: PINN Initialization / Additive app Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training
00000 0®00

A4 — Problem cons1dered

Problem statement: Consider the Poisson problem in 1D with Dirichlet BC:
—Ouu=Ff, in Qx M,
u=0, on 00 x M,
with = [0, 1]% and M = [0, 1] (p = 3 parameters).
Analytical solution:  u(x; i) = pq Sin(27x) + o Sin(4mx) + ps sin(67x) .
Construction of two priors: MLP of 6 layers; Adam optimizer (10000 epochs).

Imposing the Dirichlet BC exactly in the PINN with ¢(x) = x(x — 1).
* Physics-informed training: N, = 5000 collocation points.

N(o\
1 2
jf( XX co|7IJ’co|) +f( col’l'l’col)‘ .
+ Data-driven training: Ndata = 5000 data.
Naata ) ) ) ) 9
Jdata (9) = Naor Z ’udata xgla)ta5 :U*gla)ta) - u(xgla)ta5 :U*gla)ta)’ .
e i=1
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00 00 00000 0080

A4 — Priors derivatives

pM =(0.3,0.2,0.1)

Solutions First-order derivatives Second-order derivatives Absolute errors
T T 3 T T T

6 lel - -
le-1
4 50
le-3
2 E
0 le-5 |
0.2 0 teTE [—  Ju—uel E
! —50 |0vu — Dguol |
= 04| . ¥ W\ le-9 | |— |02, u — 92, ug| |
zZ 0 02 04 06 08 1 0 02 04 06 08 1 0 0 02 04 06 08 1
= - . .
Solutions First-order derivatives Second-order derivatives Absolute errors
T T y T T T T © T T T T
2
Oeu e 3
50 [ R N
le-3 R R
N A E
ob--4-X AN le-5 4
WON £
\/ terE—  lu—ui
N —50 - [0,u — dpug™|
Y 52 5% Ldata
/ \ le-9 fp|— w— &
© \J Vi e-9 102, u — 92, ug|
B 06 0.8 1 0 02 04 06 0.8 1 0 02 04 06 08 1
= z x z x
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Appendix 1: FEM Appendix 2 : PINN Initialization / Additive approach Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training
00 00 00000 oooe

A4 — Additive approach in P,

1 set of parameters: p!) = (0.3,0.2,0.1)

FEM PINN prior ug Data prior uj**
N error N error gain error gain
16 5.18-1072 16 1.29-1073 40.34 3.51-1073 14.78
32 1.24-1072 32 3.49-107% 3541 8.8-107* 14.06

50 set of parameters:

Gains in L2 rel error of our method w.r.t. FEM

PINN prior uy Data prior uj™*?

N min max mean min max mean

20 2649 271.92 140.74 6.91 60.85 26.12
40 234 25837 13411 7.3 39.34  20.55

N2 nodes.
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