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Scientific context

Context : Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.
accurate quick + parameterized

OFFLINE : PINN training

Inputs
Ω : space domain
M : parameter domain Parametric PINN

Output
uθ : prediction of

the PDE solution u

ONLINE : PINN evaluation + Enriched FEM resolution

Inputs

Ω : space domain

One given µ ∈ M
Trained PINN

PINN evaluation

uθ : prediction for

the parameter µ
FEM solver

enriched by uθ

Output

enriched FEM solution

(depending on the mesh size h)

Complete ONLINE process : quick + accurate
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Heated cavity test case
Stationary incompressible Navier-Stokes equations (with buoyancy and gravity)1 :
We considerΩ = [−1, 1]2 a squared domain and ey = (0, 1).
Find the velocity u = (u1, u2), the pressure p and the temperature T such that

(u · ∇)u+∇p− ν∆u− g(βT+ 1)ey = 0 inΩ (momentum)

∇ · u = 0 inΩ (incompressibility)

u · ∇T− kf∆T = 0 inΩ (energy)

+ suitable BC

(P )

with g = 9.81 the gravity, β = 0.1 the expansion coefficient, ν the viscosity and kf the
thermal conductivity. [Coulaud et al., 2024]

1The approach will be shown on this example, but can be extended to other test cases.
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Heated cavity test case
Objective: Simulation on a range of parameters µ = (ν, kf) ∈ M = [0.01, 0.1]2.

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity) :
We consider x = (x, y) ∈ Ω and ey = (0, 1).
Find U = (u, p, T) = (u1, u2, p, T) such that

Rmom(U; x,µ) = 0 inΩ (momentum)

Rinc(U; x,µ) = 0 inΩ (incompressibility)

Rener(U; x,µ) = 0 inΩ (energy)

+ suitable BC

(P )

with g = 9.81 the gravity, β = 0.1 the expansion coefficient, ν the viscosity and kf the
thermal conductivity. [Coulaud et al., 2024]
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Heated cavity test case
Objective: Simulation on a range of parameters µ = (ν, kf) ∈ M = [0.01, 0.1]2.

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity) :
We consider x = (x, y) ∈ Ω and ey = (0, 1).
Find U = (u, p, T) = (u1, u2, p, T) such that

Rmom(U; x,µ) = 0 inΩ (momentum)

Rinc(U; x,µ) = 0 inΩ (incompressibility)

Rener(U; x,µ) = 0 inΩ (energy)

(P )

with g = 9.81 the gravity, β = 0.1 the expansion coefficient, ν the viscosity and kf the
thermal conductivity. [Coulaud et al., 2024]

Boundary Conditions:
No-slip BC : u = 0 on ∂Ω Isothermal BC : T = 1 on the left wall (x = −1)

T = −1 on the right wall (x = 1)

Adiabatic BC :
∂T
∂n

= 0 on the top and bottom walls (y = ±1, denoted by Γad)



LECOURTIER Frédérique
Enriching continuous Lagrange FE approximation spaces using NN

3/21

3/21

Introduction Parametric PINN Finite element method (FEM) Enriched finite element method using PINN Numerical results Conclusion References

Evaluate quality of solutions
In the following, we are interested in three parameters (rising in complexity) :

µ(1) = (0.1, 0.1), µ(2) = (0.05, 0.05) and µ(3) = (0.01, 0.01)

We evaluate the quality of solutions by comparing them to a reference solution.1

1Computed on an over-refined mesh (h = 7.10−3) on a P2
3 × P2 × P3 continuous Lagrange FE space.
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Evaluate quality of solutions
In the following, we are interested in three parameters (rising in complexity) :

µ(1) = (0.1, 0.1), µ(2) = (0.05, 0.05) and µ(3) = (0.01, 0.01)

We evaluate the quality of solutions by comparing them to a reference solution.1

Reference solution - Rayleigh number : Ra = 1569.6

u1,ref u2,ref pref Tref

1Computed on an over-refined mesh (h = 7.10−3) on a P2
3 × P2 × P3 continuous Lagrange FE space.
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Evaluate quality of solutions
In the following, we are interested in three parameters (rising in complexity) :

µ(1) = (0.1, 0.1), µ(2) = (0.05, 0.05) and µ(3) = (0.01, 0.01)

We evaluate the quality of solutions by comparing them to a reference solution.1

Reference solution - Rayleigh number : Ra = 6278.4

u1,ref u2,ref pref Tref

1Computed on an over-refined mesh (h = 7.10−3) on a P2
3 × P2 × P3 continuous Lagrange FE space.
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Evaluate quality of solutions
In the following, we are interested in three parameters (rising in complexity) :

µ(1) = (0.1, 0.1), µ(2) = (0.05, 0.05) and µ(3) = (0.01, 0.01)

We evaluate the quality of solutions by comparing them to a reference solution.1

Reference solution - Rayleigh number : Ra = 156 960

u1,ref u2,ref pref Tref

1Computed on an over-refined mesh (h = 7.10−3) on a P2
3 × P2 × P3 continuous Lagrange FE space.
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Parametric PINN

The PINN is parametrized by theµ parameter.
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Neural Network considered
We consider a parametric NN with 4 inputs and 4 outputs, defined by

Uθ(x,µ) =
(
u1,θ, u2,θ, pθ, Tθ)(x,µ).

The Dirichlet boundary conditions are imposed on the outputs of the MLP by a
post-processing step. [Sukumar and Srivastava, 2022]

x

y

ν

kf

x

µ

ũ1,θ

ũ2,θ

p̃θ

T̃θ

×φ1 u1,θ

×φ1 u2,θ

pθ

×φ2 +g Tθ

u1,θ = 0 on ∂Ω

u2,θ = 0 on ∂Ω

Tθ =

{
1 for x = −1

−1 for x = 1

We consider two levelsets functions φ1 and φ2, and the linear function g defined by

φ1(x, y) = (x− 1)(x+ 1)(y− 1)(y+ 1),

φ2(x, y) = (x− 1)(x+ 1) and g(x, y) = 1− (x+ 1).
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PINN training
Approximate the solution of (P ) by a PINN : Find the optimal weights θ⋆, such that

θ⋆ = argmin
θ

(
Jinc(θ) + Jmom(θ) + Jener(θ) + Jad(θ)

)
, (Pθ)

where the different cost functions1 are defined by

adiabatic condition

3 residual losses

Jad(θ) =
∫
M

∫
Γad

∣∣∂Tθ(x,µ)
∂n

∣∣2dxdµ,
J•(θ) =

∫
M

∫
Ω

∣∣R•(Uθ(x,µ); x,µ)
∣∣2dxdµ,

with Uθ the parametric NN and • the PDE considered (i.e. inc,mom or ener).

Network - MLP
layers 40, 60, 60, 60, 40

σ sine

Training (ADAM / LBFGs)
lr 7e-3 Ncol 40000

nepochs 10000 Nbc 30000

1Discretized by a random process using Monte-Carlo method.
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Prediction on µ(1) = (0.1, 0.1)

Prediction :

u1,θ u2,θ Tθ

Error map :

u1,ref − u1,θ u2,ref − u2,θ Tref − Tθ

L2 error : 2.98× 10−2 3.17× 10−2 3.90× 10−2

(relative)
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Finite element method (FEM)

Theµ parameter is fixed in the FE resolution.
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Discrete weak formulation
We consider a mixed finite element space Mh = [V 0

h ]
2 × Qh × Wh and

(
dim(V 0

h ) = Nu
)

uh ∈ [V 0
h ]

2 ⊂ [H1
0(Ω)]

2 : P2

}
(Taylor–Hood spaces)

(
dim(Qh) = Np

)

ph ∈ Qh ⊂ L20(Ω) : P1

(
dim(Wh) = NT

)

Th ∈ Wh ⊂ W : P2

with W = {w ∈ H1(Ω), w|x=−1 = 1, w|x=1 = −1}.
Weak problem : Find Uh = (uh, ph, Th) ∈ Mh s.t., ∀(vh, qh,wh) ∈ M 0

h ,∫
Ω
(uh · ∇)uh · vh dx+ µ

∫
Ω
∇uh : ∇vh dx

−
∫
Ω

ph ∇ · vh dx− g
∫
Ω
(1 + βTh)ey · vh dx = 0, (momentum)∫

Ω
qh ∇ · uh dx + 10−4

∫
Ω

qh ph dx = 0, (incompressibility + pressure penalization)∫
Ω
(uh · ∇Th)wh dx+

∫
Ω

kf∇Th · ∇wh dx = 0, (energy)

(Ph)

where M 0
h = [V 0

h ]
2 × Qh × W 0

h with W 0
h ⊂ {w ∈ H1[Ω], w|x=±1 = 0}.
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Newton method
We consider the following three parameters:

µ(1) = (0.1, 0.1), µ(2) = (0.05, 0.05) and µ(3) = (0.01, 0.01).

Denoting Nh the dimension of Mh, we want to solve the non linear system:

F(U⃗k) = 0

with F : RNh → RNh a non linear operator and U⃗k ∈ RNh the unknown vector
associated to the k-th parameter µ(k) (k = 1, 2, 3). Appendix 1

Algorithm 1: Newton algorithm

Initialization step: set U⃗(0)
k = U⃗k,0;

for n ≥ 0 do
Solve the linear system F(U⃗(n)

k ) + F′(U⃗(n)
k )δ

(n+1)
k = 0 for δ(n+1)

k ;

Update U⃗(n+1)
k = U⃗(n)

k + δ
(n+1)
k ;

end

How to initialize the Newton solver?
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Newton method
We consider the following three parameters:

µ(1) = (0.1, 0.1), µ(2) = (0.05, 0.05) and µ(3) = (0.01, 0.01).

Denoting Nh the dimension of Mh, we want to solve the non linear system:

F(U⃗k) = 0

with F : RNh → RNh a non linear operator and U⃗k ∈ RNh the unknown vector
associated to the k-th parameter µ(k) (k = 1, 2, 3). Appendix 1

Algorithm 1: Newton algorithm

Initialization step: set U⃗(0)
k = U⃗k,0;

for n ≥ 0 do
Solve the linear system F(U⃗(n)

k ) + F′(U⃗(n)
k )δ

(n+1)
k = 0 for δ(n+1)

k ;

Update U⃗(n+1)
k = U⃗(n)

k + δ
(n+1)
k ;

end

How to initialize the Newton solver?
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3 types of initialization

• Natural :

• PINN :

• Continuation method :
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3 types of initialization

• Natural : Using constant or linear function.
Considering a fixed parameter with k ∈ {1, 2, 3}, we can use the following
initialization:

U⃗k,0 =
(⃗
0, 0⃗, 0⃗, T⃗0

)
where for i = 1, . . . , dim(Wh),

(⃗T0)i = g(x(i)) = 1− (x(i) + 1)

with x(i) =
(
x(i), y(i)

)
the i-th dofs coordinates of Wh.

• PINN :

• Continuation method :
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3 types of initialization

• Natural : Using constant or linear function.

• PINN : Using PINN prediction.
(UNet : [Odot et al., 2021] ; FNO : [Aghili et al., 2025])
Considering a fixed parameter with k ∈ {1, 2, 3}, we can use the following
initialization for i = 1, . . . ,Nh,(

U⃗k,0

)
i
= Uθ(x

(i),µ(k))

with x(i) =
(
x(i), y(i)

)
the i-th dofs coordinates of Mh and Uθ the PINN.

• Continuation method :
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3 types of initialization

• Natural : Using constant or linear function.

• PINN : Using PINN prediction.
(UNet : [Odot et al., 2021] ; FNO : [Aghili et al., 2025])

• Continuation method : Using a coarse FE solution of a simpler parameter.
– We consider a fixed parameter with k ∈ {2, 3}.
– We consider a coarse grid (16× 16 grid) and compute the FE solution of (Ph) for

the parameterµ(k−1).
– We interpolate the coarse solution to the current mesh.
– We use it as an initialization for the Newton method, i.e.

U⃗k,0 =
(⃗
uk−1, v⃗k−1, p⃗k−1, T⃗k−1

)
where u⃗k−1, v⃗k−1, p⃗k−1 and T⃗k−1 are the FE solutions for the parameterµ(k−1).
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Enriched finite element method
using PINN

Very simple linear test case
The heated cavity test case considered
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Enriched finite element method
using PINN

Very simple linear test case
The heated cavity test case considered
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What is the purpose of enrichment?
Poisson problem (with Dirichlet BC) : Find u : Ω → R such that{

−∆u = f, in Ω,

u = 0, on ∂Ω.

Variational Problem : We consider V0h a Pk continuous Lagrange FE space (k ≥ 1).

Find uh ∈ V0h such that, ∀vh ∈ V0h , a(uh, vh) = l(vh), (Ph)

with h the characteristic mesh size, a and l the associated bilinear and linear forms.
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What is the purpose of enrichment?
Poisson problem (with Dirichlet BC) : Find u : Ω → R such that{

−∆u = f, in Ω,

u = 0, on ∂Ω.

Variational Problem : We consider V0h a Pk continuous Lagrange FE space (k ≥ 1).

Find uh ∈ V0h such that, ∀vh ∈ V0h , a(uh, vh) = l(vh), (Ph)

with h the characteristic mesh size, a and l the associated bilinear and linear forms.
Modified variational Problem : Let uθ be a PINN prediction.

Find C+h,u ∈ V0h such that, ∀vh ∈ V0h , a(C
+
h,u, vh) = l(vh)−a(uθ, vh), (P+

h )

with the enriched trial space V+h defined by

V+h =
{
u+h = uθ + C+h,u, C+h,u ∈ V0h

}
.
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What is the purpose of enrichment?
Modified variational Problem : Let uθ be a PINN prediction.

Find C+h,u ∈ V0h such that, ∀vh ∈ V0h , a(C
+
h,u, vh) = l(vh)−a(uθ, vh), (P+

h )

with the enriched trial space V+h defined by

V+h =
{
u+h = uθ + C+h,u, C+h,u ∈ V0h

}
.

u
uθ

C+
h,u

u
uθ

We hope that the modified problem will give the same results
as the standard one on coarser meshes.
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Convergence analysis
Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote uh ∈ Vh the solution of (Ph) with Vh the standard trial space. Then,

|u− uh|H1 ⩽ CH1 hk|u|Hk+1 ,

∥u− uh∥L2 ⩽ CL2 hk+1|u|Hk+1 .

Theorem 2: Convergence analysis of the enriched FEM [F. Lecourtier et al., 2025]

We denote u+h ∈ V+h the solution of (P+
h ) with V+h the enriched trial space.

Then,
|u− u+h |H1 ⩽ |u−uθ|Hk+1

|u|Hk+1

(
CH1 hk|u|Hk+1

)
,

∥u− u+h ∥L2 ⩽ |u−uθ|Hk+1

|u|Hk+1

(
CL2 hk+1|u|Hk+1

)
.

Gains of the additive approach.
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Enriched finite element method
using PINN

Very simple linear test case
The heated cavity test case considered
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Enriched space using PINN
Considering the PINN prior Uθ = (uθ, pθ, Tθ), we define the mixed finite element
space additively enriched by the PINN as follows:

M+
h =

{
U+
h = Uθ + C+h , C+h ∈ M 0

h

}
with M 0

h = [V 0
h ]

2 × Qh × W0
h , U

+
h = (u+h , p

+
h , T

+
h ) ∈ M+

h and C+h = (C+h,u, C
+
h,p, C

+
h,T).

We can then define the three finite element subspaces of M+
h as follows:

V+h =
{
u+h = uθ + C+h,u, C

+
h,u ∈ [V 0

h ]
2
}
,

Q+
h =

{
p+h = pθ + C+h,p, C+h,p ∈ Qh

}
,

W+
h =

{
T+h = Tθ + C+h,T, C+h,T ∈ W 0

h

}
,

where C+h,u, C
+
h,p and C+h,T becomes the unknowns.

C+
h

U
Uθ
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Weak formulation - Additive approach
Weak problem : Find C+h = (C+h,u, C

+
h,p, C

+
h,T) ∈ M 0

h s.t., ∀(vh, qh,wh) ∈ M 0
h ,∫

Ω

[
(uθ · ∇)uθ + (uθ · ∇)C+h,u + (C+h,u · ∇)uθ + (C+h,u · ∇)C+h,u

]
· vh dx

+ µ

(∫
Ω
∇uθ : ∇vh dx+

∫
Ω
∇C+h,u : ∇vh dx

)
+

(∫
Ω
∇pθ · vh dx−

∫
Ω

C+h,p∇ · vh dx
)

− g
∫
Ω
(1 + β(Tθ + C+h,T))ey · vh dx = 0, (momentum)∫

Ω
qh

[
∇ · uθ +∇ · C+h,u

]
dx + 10−4

∫
Ω

qh (pθ + C+h,p) dx = 0, (incompressibility + penal)∫
Ω

[
uθ · ∇Tθ + uθ · ∇C+h,T + C+h,u · ∇Tθ + C+h,u · ∇C+h,T

]
wh dx

+ kf

(∫
Ω
∇Tθ · ∇wh dx+

∫
Ω
∇C+h,T · ∇wh dxwh ds

)
= 0, (energy)

(P+
h )

with Uθ = (uθ, pθ, Tθ) the PINN prior and some modified boundary conditions.
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Newton method - Additive approach
We want to solve the non linear system:

Fθ (⃗C) = 0

with Fθ : RNh → RNh the non linear operator associated to the weak problem (P+
h )

and C⃗ ∈ RNh the correction vector (unknown).

Algorithm 2: Newton algorithm [Aghili et al., 2025]

Initialization step: set C⃗(0) = 0;
for n ≥ 0 do

Solve the linear system Fθ (⃗C(n)) + F′θ (⃗C
(n))δ(n+1) = 0 for δ(n+1);

Update C⃗(n+1) = C⃗(n) + δ(n+1);
end

Advantage compared to PINN initialization1:

uθ is not required to live in the same discrete space as C+h .

1Taking Uθ and C+h in the same space, additive approach is exactly the same as the PINN initialization.
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Numerical results

• Results obtained with a laptop GPU.

• The newton solver is the same for all methods (rtol= 10−10, atol= 10−10, max_it= 30).

• Additive approach : we consider uθ in a P2
3 × P2 × P3 continuous Lagrange FE space

(defined on the current mesh).
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Error estimates I
µ(1) :

0.1880.0910.0450.022

10−7

10−6

10−5

10−4

10−3

3

1
h

L2 u1

0.1880.0910.0450.022

10−7

10−6

10−5

10−4

10−3

3

1
h

L2 u2

0.1880.0910.0450.022

10−7

10−6

10−5

10−4

10−3

3

1
h

L2 T

Std - Natural init (6 iterations) Std - PINN init (3) Additive (3)

µ(2) :

0.1890.0910.0450.022

10−7

10−6

10−5

10−4

10−3

3

1
h

L2 u1

0.1890.0910.0450.022

10−7

10−6

10−5

10−4

10−3

3

1
h

L2 u2

0.1890.0910.0450.022

10−7

10−6

10−5

10−4

10−3

3

1
h

L2 T

Std - Natural init (10/X) Std - Continuation (4) Std - PINN init (3) Additive (3)



LECOURTIER Frédérique
Enriching continuous Lagrange FE approximation spaces using NN

15/21

15/21

Introduction Parametric PINN Finite element method (FEM) Enriched finite element method using PINN Numerical results Conclusion References

Error estimates I
µ(1) :
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Error estimates II
µ(3) :
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Prediction :

u1,θ u2,θ Tθ

L2 error : 5.75× 10−1 4.89× 10−1 2.57× 10−1

(relative)
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Error estimates II
µ(3) :
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L2 error : 5.75× 10−1 4.89× 10−1 2.57× 10−1

(relative)
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Numerical costs
Defining the global error as the sum of the L2 relatives errors on u and T.
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Numerical costs
µ(1) = (0.1, 0.1)
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Ndofs and execution time required to reach the same global L2 relative error e :

Std vs Add Number of DoFs Execution times

e Std Add (nat) (PINN) Add

1 · 10−3 6,031 2,044 0.32 0.16 0.16
1 · 10−4 26,959 10,588 0.99 0.48 0.23
1 · 10−5 121,156 49,231 4.21 1.75 0.96

÷2.5 ÷2

÷4
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Numerical costs
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Ndofs and execution time required to reach the same global L2 relative error e :

Std vs Add Number of DoFs Execution times
e Std Add (nat) (cont) (PINN) Add

1 · 10−3 7,828 2,748 0.58 0.39 0.19 0.24
1 · 10−4 35,884 14,623 1.95 1.14 0.8 0.32
1 · 10−5 167,583 70,303 9.39 4.16 3.4 1.59

÷2.4 ÷2

÷2.5

÷6
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Numerical costs

µ(1) = (0.1, 0.1) µ(2) = (0.05, 0.05)
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Ndofs and execution time required to reach the same global L2 relative error e :

Std vs Add Number of DoFs Execution times

e Std Add (nat) (cont) (PINN) Add

1 · 10−3 33,204 23,524 X 1.29 0.96 0.91
1 · 10−4 150,339 108,931 X 4.76 4.67 3.65
1 · 10−5 690,924 502,156 X 20.34 23.3 17.23
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Non parametric PINN1 for µ(3)

Prediction :

u1,θ u2,θ Tθ

Error map :

u1,ref − u1,θ u2,ref − u2,θ Tref − Tθ

L2 error :
(relative) 7.60× 10−2 5.38× 10−2 9.63× 10−2

1We consider exactly the same architecture, but this time we train the PINN non-parametrically.
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Error estimates on µ(3)
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Numerical costs on µ(3)

Parametric
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Ndofs and execution time required to reach the same global L2 relative error e :

Number of DoFs Execution times
e (PINN) Add Add+ (PINN) (PINN)+ Add Add+

1 · 10−3 33,204 23,524 13,764 0.96 0.56 0.91 0.31
1 · 10−4 150,339 108,931 70,303 4.67 2.82 3.65 1.78
1 · 10−5 690,924 502,156 339,231 23.3 13.84 17.23 6.42

÷2 ÷3
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Conclusion
• The enriched approach provides the same results as the standard FEM method,
but with coarser meshes.
⇒ Reduction of the computational cost : DoFs, iterations, execution times.

• Theory on linear problems shows that it’s the derivatives of the prior that are
the most crucial. Appendix 4
⇒ PINNs are good candidates for the enriched approach.

• The gains obtained on linear problems were much higher. Appendix 3
⇒ Improved training of parametric PINN (or Neural Operators).
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A1 – Construction of the unknown vector
Considering (ϕi)

Nu
i=1, (ψj)

Np

j=1 and (ηk)
NT
k=1 the basis functions of the finite element

spaces V 0
h , Qh and Wh respectively, we can write the discrete solutions as:

uh(x) =
Nu∑
i=1

(
ui
vi

)
ϕi(x), ph(x) =

Np∑
j=1

pjψj(x) and Th(x) =
NT∑

k=1

Tkηk(x),

with the unknown vectors for velocity, pressure and temperature defined by

u⃗ =
(
ui
)Nu

i=1
∈ RNu , v⃗ =

(
vi
)Nu

i=1
∈ RNu ,

p⃗ =
(
pj
)Np

j=1
∈ RNp and T⃗ =

(
Tk
)NT

k=1
∈ RNT .

Considering Nh = 2Nu + Np + NT, we can define the global vector of unknowns as:

U⃗ =
(⃗
u, v⃗, p⃗, T⃗) ∈ RNh .

and F : RNh → RNh the nonlinear operator associated to the weak formulation (Ph).
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Appendix 2 : PINN Initialization /
Additive approach
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A2 – Comparison of the 2 approaches
Taking Uθ and C+h in the same space, we have :

Fθ (⃗C) = F(U⃗θ + C⃗),

with C⃗ the correction vector and U⃗θ the PINN vector (PINN evaluation at the dofs),
both of size Nh.
The first iteration of the additive approach :

Fθ (⃗C
(0)) + F′θ (⃗C

(0))δ(1) = 0

becomes (as C(0) = 0) :
F(U⃗θ) + F′(U⃗θ)δ

(1) = 0,

which is equivalent as the standard method with the PINN initialization.
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Appendix 3 : Results - Linear
problem
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A3 – Problem considered
Problem statement: Consider the Poisson problem with Dirichlet BC:{

−∆u = f, in Ω×M,

u = 0, on ∂Ω×M,

withΩ = [−0.5π, 0.5π]2 andM = [−0.5, 0.5]2 (p = 2 parameters).

Analytical solution :

u(x,µ) = exp
(
− (x− µ1)

2 + (y− µ2)
2

2

)
sin(2x) sin(2y).

PINN training: MLP of 5 layers; LBFGs optimizer (5000 epochs).
Imposing the Dirichlet BC exactly in the PINN with the levelset φ defined by

φ(x) = (x+ 0.5π)(x− 0.5π)(y+ 0.5π)(y− 0.5π).

Training time : less than 1 hour on a laptop GPU.
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A3 – Numerical results
Error estimates : 1 set of parameters.

µ(1) = (0.05, 0.22)
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A3 – Numerical results
Error estimates : 1 set of parameters.

µ(1) = (0.05, 0.22)

2.96e-11.43e-17.05e-23.50e-21.74e-2
10−12

10−6

100

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

Gains achieved : np = 50 sets of parameters.

S =
{
µ(1), . . . ,µ(np)

}
Gains in L2 rel error

of our method w.r.t. FEM

k min max mean

1 134.32 377.36 269.39

2 67.02 164.65 134.85

3 39.52 72.65 61.55

N = 20

Gain : ∥u− uh∥L2/∥u− u+h ∥L2

Cartesian mesh : N2 nodes.
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A3 – Numerical results
Error estimates : 1 set of parameters.

µ(1) = (0.05, 0.22)

2.96e-11.43e-17.05e-23.50e-21.74e-2
10−12

10−6

100

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

e

Ndofs required to reach the same error e :

Ndofs

k e FEM Add

1 1 · 10−3 14,161 64

1 · 10−4 143,641 576

2 1 · 10−4 6,889 225

1 · 10−5 31,329 1,089

3 1 · 10−5 6,724 784

1 · 10−6 20,164 2,704



LECOURTIER Frédérique
Enriching continuous Lagrange FE approximation spaces using NN

5/7

5/75/7

Appendix 1 : FEM Appendix 2 : PINN Initialization / Additive approach Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training

Appendix 4 : Data-driven vs
Physics-Informed training
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A4 – Problem considered
Problem statement: Consider the Poisson problem in 1D with Dirichlet BC:{

−∂xxu = f, in Ω×M,

u = 0, on ∂Ω×M,

withΩ = [0, 1]2 andM = [0, 1]3 (p = 3 parameters).

Analytical solution : u(x;µ) = µ1 sin(2πx) + µ2 sin(4πx) + µ3 sin(6πx) .

Construction of two priors: MLP of 6 layers; Adam optimizer (10000 epochs).
Imposing the Dirichlet BC exactly in the PINN with φ(x) = x(x− 1).

• Physics-informed training: Ncol = 5000 collocation points.

Jr(θ) ≃
1

Ncol

Ncol∑
i=1

∣∣∂xxuθ(x(i)col;µ(i)
col

)
+ f

(
x(i)col;µ

(i)
col

)∣∣2.
• Data-driven training: Ndata = 5000 data.

Jdata(θ) =
1

Ndata

Ndata∑
i=1

∣∣udataθ (x(i)data;µ
(i)
data)− u(x(i)data;µ

(i)
data)

∣∣2.
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A4 – Priors derivatives

µ(1) = (0.3, 0.2, 0.1)
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Appendix 1 : FEM Appendix 2 : PINN Initialization / Additive approach Appendix 3 : Results - Linear problem Appendix 4 : Data-driven vs Physics-Informed training

A4 – Additive approach in P1

1 set of parameters: µ(1) = (0.3, 0.2, 0.1)

FEM

N error

16 5.18 · 10−2

32 1.24 · 10−2

PINN prior uθ Data prior udataθ

N error gain error gain

16 1.29 · 10−3 40.34 3.51 · 10−3 14.78

32 3.49 · 10−4 35.41 8.8 · 10−4 14.06

50 set of parameters:

Gains in L2 rel error of our method w.r.t. FEM

PINN prior uθ Data prior udataθ

N min max mean min max mean

20 26.49 271.92 140.74 6.91 60.85 26.12
40 23.4 258.37 134.11 7.13 39.34 20.55

N2 nodes.
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