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Scientific context

Context : Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.
accurate quick + parameterized

HIParametric elliptic convection/diffusion PDE : For one or several µ ∈ M, find
u : Ω → R such that

L
(
u ; x,µ

)
= f(x,µ), (P )

where L is the parametric differential operator defined by

L(·; x,µ) : u 7→ R(x,µ)u+ C(µ) · ∇u− 1

Pe
∇ · (D(x,µ)∇u),

and some Dirichlet, Neumann or Robin BC (which can also depend on µ).
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Pipeline of the Enriched FEM
Enriched FEM = Combination of 2 standard methods

• PINNs : Physics Informed Neural Networks Appendix 1.1

• FEMs : Finite Element Methods Appendix 1.2

OFFLINE : PINN training

Inputs
Ω : space domain
M : parameter domain Parametric PINN

Output
uθ : prediction of

the PDE solution u

ONLINE : PINN evaluation + Enriched FEM resolution

Inputs

Ω : space domain

One given µ ∈ M
Trained PINN

PINN evaluation

uθ : prediction for

the parameter µ
FEM solver

enriched by uθ

Output

enriched FEM solution

(depending on the mesh size h)

Remark : The PINN prediction enriched Finite element approximation spaces.
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Enriched finite element method
using PINNs

Additive approach
HINumerical results

This section is based on [F. Lecourtier et al., 2025].



LECOURTIER Frédérique
Development of an hybrid finite element and neural network method

3/21

3/21

Introduction Enriched finite element method using PINNs New lines of research Supplementary work Conclusion References

Enriched finite element method
using PINNs

Additive approach
HINumerical results



LECOURTIER Frédérique
Development of an hybrid finite element and neural network method

3/21

3/21

Introduction Enriched finite element method using PINNs New lines of research Supplementary work Conclusion References

Additive approach
Variational Problem : Let uθ ∈ Hk+1(Ω) ∩ H1

0(Ω).

Find p+h ∈ V0h such that, ∀vh ∈ V0h , a(p
+
h , vh) = l(vh)− a(uθ, vh), (P+

h )

with the enriched trial space V+h defined by

V+h =
{
u+h = uθ + p+h , p+h ∈ V0h

}
.

General Dirichlet BC : If u = g on ∂Ω, then

p+h = g− uθ on ∂Ω,

with uθ the PINN prior.

u
uθ

p+h

u
uθ
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Convergence analysis
Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote uh ∈ Vh the solution of (Ph) with Vh the standard trial space. Then,

|u− uh|H1 ⩽ CH1 hk|u|Hk+1 ,

‖u− uh‖L2 ⩽ CL2 hk+1|u|Hk+1 .

Theorem 2: Convergence analysis of the enriched FEM [F. Lecourtier et al., 2025]

We denote u+h ∈ V+h the solution of (P+
h ) with V+h the enriched trial space.

Then,
|u− u+h |H1 ⩽ |u−uθ|Hk+1

|u|Hk+1

(
CH1 hk|u|Hk+1

)
,

‖u− u+h ‖L2 ⩽ |u−uθ|Hk+1

|u|Hk+1

(
CL2 hk+1|u|Hk+1

)
.

Gains of the additive approach.
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1st problem considered
Problem statement: Considering an Anisotropic Elliptic problem with Dirichlet BC:{

−div(D∇u) = f, in Ω,

u = 0, on ∂Ω,

withΩ = [0, 1]2 andM = [0.4, 0.6]× [0.4, 0.6]× [0.01, 1]× [0.1, 0.8] (p = 4).

Right-hand side :

f(x,µ) = exp
(
− (x− µ1)

2 + (y− µ2)
2

0.025σ2

)
.

Diffusion matrix : (symmetric and positive definite)

D(x,µ) =

(
ϵx2 + y2 (ϵ− 1)xy
(ϵ− 1)xy x2 + ϵy2

)
.

PINN training: Imposing BC exactly with a level-set function.
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Numerical results
Error estimates : 1 set of parameters.

µ = (0.51, 0.54, 0.52, 0.55)

9.43e-24.56e-22.24e-21.11e-25.55e-3

10−10

10−5

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3
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Numerical results
Error estimates : 1 set of parameters.

µ = (0.51, 0.54, 0.52, 0.55)

9.43e-24.56e-22.24e-21.11e-25.55e-3

10−10

10−5

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

Gains achieved : np = 50 sets of parameters.

S =
{
µ(1), . . . ,µ(np)

}
Gains in L2 rel error

of our method w.r.t. FEM

k min max mean

1 7.12 82.57 35.67

2 3.54 35.88 18.32

3 1.33 26.51 8.32

N = 20

Gain : ‖u− uh‖L2/‖u− u+h ‖L2

Cartesian mesh : N2 nodes.
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2nd problem considered
Problem statement: Considering the Poisson problem with mixed BC:

−∆u = f, in Ω×M,

u = g, on ΓE ×M,
∂u
∂n

+ u = gR, on ΓI ×M,

withΩ = {(x, y) ∈ R2, 0.25 ≤ x2 + y2 ≤ 1} andM = [2.4, 2.6] (p = 1).
ΓE and ΓI are the outer and inner boundaries of the annulusΩ, respectively.

Analytical solution :

u(x;µ) = 1−
ln

(
µ1

√
x2 + y2

)
ln(4)

,

Boundary conditions :

g(x;µ) = 1− ln(µ1)

ln(4)
and gR(x;µ) = 2 +

4− ln(µ1)

ln(4)
.

PINN training: Imposing mixed BC exactly in the PINN1.

1[Sukumar and Srivastava, 2022]
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Numerical results
Error estimates : 1 set of parameters.

µ = 2.51

1.67e-18.70e-24.35e-22.20e-21.10e-2

10−11

10−6

10−1

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

Gains achieved : np = 50 sets of parameters.

S =
{
µ(1), . . . ,µ(np)

}
Gains in L2 rel error

of our method w.r.t. FEM

k min max mean

1 15.12 137.72 55.5

2 31 77.46 58.41

3 18.72 21.49 20.6

h = 1.33 · 10−1

Gain : ‖u− uh‖L2/‖u− u+h ‖L2
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Numerical solutions
1st problem : µ = (0.46, 0.52, 0.05, 0.12) (k = 2, h = 9, 43 · 10−2)
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2nd problem : µ = 2.51 (k = 1, h = 1, 67 · 10−1)
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New lines of research
Complex geometries
HIA posteriori error estimates
HINon linear PDEs
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New lines of research
Complex geometries
HIA posteriori error estimates
HINon linear PDEs



LECOURTIER Frédérique
Development of an hybrid finite element and neural network method

10/21

10/21

Introduction Enriched finite element method using PINNs New lines of research Supplementary work Conclusion References

Learn a regular levelset
Theorem 3: [Clémot and Digne, 2023]

If we have a boundary domain Γ, the SDF is solution to the Eikonal equation:
||∇ϕ(X)|| = 1, X ∈ O
ϕ(X) = 0, X ∈ Γ

∇ϕ(X) = n, X ∈ Γ
withO a box which containsΩ completely and n the exterior normal to Γ.

Objective: Move on to complex geometries by using a levelset function to
• Sample points in the domainΩ for the PINN training.
• Impose exactly the boundary condition in PINN [Sukumar and Srivastava, 2022].

How to learn a regular levelset ? with a PINN by adding a regularization term,

Jreg =
∫
O
|∆ϕ|2,

and a sample of boundary points that considers the curvature of Γ. HI
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Numerical results
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New lines of research
Complex geometries
HIA posteriori error estimates
HINon linear PDEs
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Problem considered
Problem statement: Considering the Poisson problem with Dirichlet BC:{

−∆u = f, in Ω×M,

u = 0, on Γ×M,

withΩ = [−0.5π, 0.5π]2 andM = [−0.5, 0.5]2 (p = 2).

Analytical solution :

u(x;µ) = exp
(
− (x− µ1)

2 + (y− µ2)
2

2(0.15)2

)
sin(2x) sin(2y).

PINN training: Imposing Dirichlet BC exactly in the PINN.
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Adaptive mesh refinement
Adaptive refinement loop using Dorfler marking strategy. Appendix 4.1

Standard FEM

· · · −→ SOLVE −→ ESTIMATE −→ MARK −→ REFINE −→ · · ·
on uh ηres,T

Local residual estimator (in L2 norm): Let T be a cell of Th .

η2res,T = h2T ‖∆uh + fh‖2L2(T) +
1

2

∑
E∈∂T

hE‖[∇uh · n]‖2L2(E)

with h• the size of • and considering the Poisson problem.



LECOURTIER Frédérique
Development of an hybrid finite element and neural network method

13/21

13/21

Introduction Enriched finite element method using PINNs New lines of research Supplementary work Conclusion References

Adaptive mesh refinement
Adaptive refinement loop using Dorfler marking strategy.

Additive Approach

· · · −→ SOLVE −→ ESTIMATE −→ MARK −→ REFINE −→ · · ·
on p+h ηres,T

Local residual estimator (in L2 norm): Let T be a cell of Th .

η2res,T = h2T ‖
(
(∆uθ)h +∆p+h

)
+ fh‖2L2(T) +

1

2

∑
E∈∂T

hE‖[∇p+h · n]‖2L2(E)

with h• the size of • and considering the Poisson problem.
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Adaptive mesh refinement
Adaptive refinement loop using Dorfler marking strategy.

Additive Approach - No resolution

· · · −→ INTERPOLATE −→ ESTIMATE −→ MARK −→ REFINE −→ · · ·
uθ ηres,T

Local residual estimator (in L2 norm): Let T be a cell of Th .

η2res,T = h2T ‖(∆uθ)h + fh‖2L2(T)
with h• the size of • and considering the Poisson problem.
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Numerical results
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FEM (adapt) Add (adapt) Add - no solve (adapt)

" Results obtained on a laptop GPU (Time measurements polluted by external factors).

Ideas for improving results : Additive approach (no resolution).

time

error

Interpolate only mesh points added in the refinement process.

Use another metric such as curvature, rather than residual error.
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New lines of research
Complex geometries
HIA posteriori error estimates
HINon linear PDEs
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Problem considered
Objective: Extend the additive approach to non linear PDEs.

Problem statement: Considering the non linear Poisson problem with Dirichlet BC:{
−div

(
(1 + 4u4)∇u

)
= f, in Ω,

u = 1, on ∂Ω.

withΩ = [−0.5π, 0.5π]2 andM = [−0.5, 0.5]2 (p = 2).

Analytical solution :

u(x;µ) = 1 + exp
(
− (x− µ1)

2 + (y− µ2)
2

2

)
sin(2x) sin(2y)

PINN training: Imposing BC exactly with a level-set function.



LECOURTIER Frédérique
Development of an hybrid finite element and neural network method

16/21

16/21

Introduction Enriched finite element method using PINNs New lines of research Supplementary work Conclusion References

Newton method
We want to solve the non linear system: Nh : number of degrees of freedom.

F(u) = 0 (1)

with F : RNh → RNh a non linear operator and u ∈ RNh the unknown vector.

Algorithm 1: Newton’s method to solve (1) [Aghili et al., 2025]

Initialization step: set u(0) = u0;
for k ≥ 0 do

Solve the linear system F(u(k)) + F′(u(k))δ(k+1) = 0 for δ(k+1);

Update u(k+1) = u(k) + δ(k+1);
end

Standard version:
Initialization with a constant value u0. For instance, u0 = 1.

DeepPhysics version: [Odot et al., 2021]
Initialization with a PINN solution u0 = uθ .
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Newton method
We want to solve the non linear system: Nh : number of degrees of freedom.

F(p+ + uθ) = 0 (1)

with F : RNh → RNh a non linear operator and p+ ∈ RNh the unknown vector.

Algorithm 2: Additive approach to solve (1)

Initialization step: set p(0)+ = 0;
for k ≥ 0 do

Solve the linear system F(p(k)+ + uθ) + F′(p(k)+ + uθ)δ(k+1) = 0 for δ(k+1);

Update p(k+1)
+ = p(k)+ + δ(k+1);

end

Advantage compared to DeepPhysics:

uθ is not required to live in the same space as p+.
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Numerical results
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Number of iterations :

• Standard Newton: 8 iterations.

• DeepPhysics: 4 iterations.

• Additive approach: 4 iterations.
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Supplementary work
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Supplementary work I
Teaching

▶ 2024/2025 :

▶ 64h of Computer Science Practical Work - L1S2 and L2S3 (Python) / L3S6 (C++)
▶ 3 days supervising a group of high school girls in RJMI

(”Rendez-vous des Jeunes Mathématiciennes et Informaticiennes”)

▶ 2023/2024 : 50h of Computer Science Practical Work - L2S3 (Python) / L3S6 (C++)

Training courses (Total : 176h35)

▶ A dozen seminars organized by IRMA (≈ 10h)

▶ 1 Deep Learning introductory course - FIDLE (≈ 40h)

▶ 2 workshops on Scientific Machine Learning (≈ 2× 21h)

▶ 1 summer school on ”New Trend in computing” (≈ 27h)

▶ several cross-disciplinary courses - Methodology, scientific English, etc. (≈ 58h)
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Supplementary work II

Talks

▶ ICOSAHOM 2025, Montréal - July 2025 (Coming soon...)
”Enriching continuous Lagrange finite element approximation spaces using neural
networks”

▶ DTE & AICOMAS 2025, Paris - February 20, 2025
”Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems
on 2D Geometries”

▶ Exama project, WP2 reunion - March 26, 2024
”How to work with complex geometries in PINNs ?”

▶ Retreat (Macaron/Tonus) - February 6, 2024
”Mesh-based methods and physically informed learning”

▶ Teammeeting (Mimesis) - December 12, 2023
”Development of hybrid finite element/neural network methods to help create
digital surgical twins”

https://icosahom2025.org/
https://dte_aicomas_2025.iacm.info/organizers
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2025_02_20.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2025_02_20.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2024_03_26.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2024_02_06.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2023_12_12.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2023_12_12.pdf
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Supplementary work III

Posters

▶ EMS-TAG-SciML 2025, Milan - March 24, 2025 - ”Enriching continuous Lagrange
finite element approximation spaces using neural networks”

▶ CJC-MA 2024, Lyon - October 29, 2024 - ”Combining Finite Element Methods and
Neural Networks to Solve Elliptic Problems on 2D Geometries”

▶ MSII poster day, Strasbourg - October 24, 2024

▶ SciML 2024, Strasbourg - July 08, 2024

Publications

▶ Enriching continuous lagrange finite element approximation spaces using
neural networks. (submitted in February 2025, M2AN journal)
H. Barucq, M. Duprez, F. Faucher, E. Franck, F. Lecourtier, V. Lleras, V.
Michel-Dansac, and N. Victorion.

https://www.mate.polimi.it/events/EMS-TAG-SciML-25/index.php
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/poster/2025_03_24.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/poster/2025_03_24.pdf
https://cjc-ma2024.sciencesconf.org/program?lang=fr
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/poster/2024_10_24.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/poster/2024_10_24.pdf
https://irma.math.unistra.fr/~micheldansac/SciML2024/participants.html
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Conclusion
Enriched finite element method using PINNs :

• PINNs are good candidates for the enriched approach. Appendix 2

• Numerical validation of the theoretical results.

• The enriched approach provides the same results as the standard FEM method,
but with coarser meshes. ⇒ Reduction of the computational cost.

We have also tested a multiplicative approach. Appendix 3

New lines of research :

• The treatment of complex geometries is progressing.

• New PDEs begin to be considered, in particular non-linear problems.

• Other methods for improving the additive approach are being studied, including
a posteriori error estimators.
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A1.1 – Physics-Informed Neural Networks
Standard PINNs1 (Weak BC) : Find the optimal weights θ⋆, such that

θ⋆ = argmin
θ

(
ωr Jr(θ) + ωb Jb(θ)

)
, (Pθ)

with

residual loss

boundary loss

Jr(θ) =
∫
M

∫
Ω

∣∣L(uθ(x,µ); x,µ)− f(x,µ)
∣∣2dxdµ,

Jb(θ) =
∫
M

∫
∂Ω

∣∣uθ(x,µ)− g(x,µ)
∣∣2dxdµ,

where uθ is a neural network, g = 0 is the Dirichlet BC.

In (Pθ), ωr and ωb are some weights.

Monte-Carlo method : Discretize the cost functions by random process.

1[Raissi et al., 2019]
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A1.1 – Physics-Informed Neural Networks
Improved PINNs1 (Strong BC) : Find the optimal weights θ⋆ such that

θ⋆ = argmin
θ

(
ωr Jr(θ) +����ωb Jb(θ)

)
,

with ωr = 1 and

residual loss Jr(θ) =
∫
M

∫
Ω

∣∣L(uθ(x,µ); x,µ)− f(x,µ)
∣∣2dxdµ,

where uθ is a neural network defined by

uθ(x,µ) = φ(x)wθ(x,µ) + g(x,µ),

with φ a level-set function, wθ a NN and g = 0 the Dirichlet BC.

Thus, the Dirichlet BC is imposed exactly in the PINN : uθ = g on ∂Ω.

1[Lagaris et al., 1998; Franck et al., 2024]
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A1.2 – Finite Element Methods1

Variational Problem :

Find uh ∈ V0h such that, ∀vh ∈ V0h , a(uh, vh) = l(vh), (Ph)

with h the characteristic mesh size, a and l the bilinear and linear forms given by

a(uh, vh) =
1

Pe

∫
Ω

D∇uh · ∇vh +
∫
Ω

R uh vh +
∫
Ω

vh C · ∇uh, l(vh) =
∫
Ω

f vh,

and V0h the finite element space defined by

V0h =
{
vh ∈ C0(Ω), ∀K ∈ Th, vh|K ∈ Pk, vh|∂Ω = 0

}
,

where Pk is the space of polynomials of degree at most k.

Linear system : Let (ϕ1, . . . , ϕNh) a basis of V
0
h . Th = {K1, . . . , KNe}

(Ne : number of elements)Find U ∈ RNh such that AU = b
with

A =
(
a(ϕi, ϕj)

)
1≤i,j≤Nh

and b =
(
l(ϕj)

)
1≤j≤Nh

.

1[Ern and Guermond, 2004]
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Appendix 2 : Data-driven vs
Physics-Informed training
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A2 – Problem considered
Problem statement: Consider the Poisson problem in 1D with Dirichlet BC:{

−∂xxu = f, in Ω×M,

u = 0, on ∂Ω×M,

withΩ = [0, 1]2 andM = [0, 1]3 (p = 3 parameters).

Analytical solution : u(x;µ) = µ1 sin(2πx) + µ2 sin(4πx) + µ3 sin(6πx) .

Construction of two priors: MLP of 6 layers; Adam optimizer (10000 epochs).
Imposing the Dirichlet BC exactly in the PINN with φ(x) = x(x− 1).

• Physics-informed training: Ncol = 5000 collocation points.

Jr(θ) '
1

Ncol

Ncol∑
i=1

∣∣∂xxuθ(x
(i)
col;µ

(i)
col

)
+ f

(
x(i)col;µ

(i)
col

)∣∣2.
• Data-driven training: Ndata = 5000 data.

Jdata(θ) =
1

Ndata

Ndata∑
i=1

∣∣udataθ (x(i)data;µ
(i)
data)− u(x(i)data;µ

(i)
data)

∣∣2.
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A2 – Priors derivatives
µ(1) = (0.3, 0.2, 0.1)
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A2 – Additive approach in P1

1 set of parameters: µ(1) = (0.3, 0.2, 0.1)

FEM

N error

16 5.18 · 10−2

32 1.24 · 10−2

PINN prior uθ Data prior udataθ

N error gain error gain

16 1.29 · 10−3 40.34 3.51 · 10−3 14.78

32 3.49 · 10−4 35.41 8.8 · 10−4 14.06

50 set of parameters:

Gains in L2 rel error of our method w.r.t. FEM

PINN prior uθ Data prior udataθ

N min max mean min max mean

20 26.49 271.92 140.74 6.91 60.85 26.12
40 23.4 258.37 134.11 7.13 39.34 20.55

N : Nodes.
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A3 –Multiplicative approach
Liffted problem : Considering M such that uM = u+ M > 0 onΩ,{

L(uM) = f, inΩ,

uM = M, on ∂Ω.

Variational Problem : Let uθ,M = uθ + M ∈ M+ Hk+1(Ω) ∩ H1
0(Ω).

Find p×h ∈ 1 + V0h such that, ∀vh ∈ V0h , a
(
uθ,M p×h , uθ,Mvh

)
= l(uθ,Mvh), (P×

h )

with the enriched trial space V×h defined by{
u×h,M = uθ,M p×h , p×h ∈ 1 + V0h

}
.

General Dirichlet BC : If u = g on ∂Ω, then

p×h =
g+ M
uθ,M

on ∂Ω,

with uθ,M the PINN prior.
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A3 – Convergence analysis

Theorem 4: Convergence analysis of the enriched FEM [F. Lecourtier et al., 2025]

We denote u×h,M ∈ V×h the solution of (P×
h ) with V×h the enriched trial space.

Then, denoting u×h = u×h,M − M,

|u− u×h |H1 ⩽
∣∣∣ uM
uθ,M

∣∣∣
Hq+1

∥uθ,M∥W1,∞
|u|Hq+1

(
CH1 hk|u|Hk+1

)
,

‖u− u×h ‖L2 ⩽ Cθ,M
∣∣∣ uM
uθ,M

∣∣∣
Hq+1

∥uθ,M∥2
W1,∞

|u|Hq+1

(
CL2 hk+1|u|Hk+1

)
.

with
Cθ,M = ‖u−1

θ,M‖L∞ + 2|u−1
θ,M|W1,∞ + |u−1

θ,M|W2,∞ .
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A3 – Additive vs Multiplicative

Theorem 5: [F. Lecourtier et al., 2025]

We have ∣∣∣ uM
uθ,M

∣∣∣
Hq+1

∥uθ,M∥W1,∞
|u|Hq+1

−→
M→∞

|u−uθ|Hk+1

|u|Hk+1
,

in H1 semi-norm and

Cθ,M
∣∣∣ uM
uθ,M

∣∣∣
Hq+1

∥uθ,M∥2
W1,∞

|u|Hq+1
−→
M→∞

|u−uθ|Hk+1

|u|Hk+1
,

in L2 norm.

Multiplicative and Additive approaches.
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A3 – Numerical results
Considering the 1D Poisson problem of Appendix 2 .
Error estimates : 1 set of parameters.

µ(1) = (0.3, 0.2, 0.1)

6.67e-23.23e-21.59e-27.87e-33.92e-3

10−6

10−4

10−2

2
3

1

h

L2

FEM P1 Mult P1 (M=3) Add P1

FEM P2 Mult P1 (M=100)
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Appendix 4 : More
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A4.1 – Adaptive mesh refinement
Dorfler marking strategy : [Dörfler, 1996]
FindMh ⊂ Th of minimal cardinality such that∑

T∈Mh

η2•,T ≥ θ
∑
T∈Th

η2•,T,

with η•,T a local estimator 1 and θ ∈ (0, 1).

1For instance, the residual estimator. [Ainsworth and Oden, 1997]
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