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Scientific context

Context : Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid / neural network | method.

accurate

w Parametric elliptic convection/diffusion PDE : For one or several u € M, find
u: 2 — R such that

L(usx, p) = flx, ), (P)

where L is the parametric differential operator defined by
1
L{sxp) 2 u e RO plu+ C(p) - Vu = 2V - (0(x, p) V),

and some Dirichlet, Neumann or Robin BC (which can also depend on p).
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Pipeline of the Enriched FEM
Enriched FEM = Combination of 2 standard methods
* PINNSs : Physics Informed Neural Networks
* FEMs : Finite Element Methods
[ OFFLINE : PINN training ]
Inputs Output :
3 € : space domain ' up : prediction of 3
! M : parameter domain ! the PDE solution u !
( ONLINE : PINN evaluation 4+ Enriched FEM resolution )
oo N ' AT
' Inputs ! PINN evaluation | SRR : Output !
! ) ! L |y AN ! !
1 Q : space domain ug ¢ prediction for 1 R —>!  curiched FEM solution
i LUK

One given p € M the parameter j FEM solver

enriched by uy

! (depending on the mesh size h) |

Remark : The PINN prediction enriched Finite element approximation spaces.
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Additive approach
¢ Numerical results

This section is based on [F. Lecourtier et al., 2025].
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Additive approach

Variational Problem : Let ug € H*"1(Q) N H{(Q).

Find p;~ € V2 such that, Vv, € V2, a(p,, vi) = I(vi) — a(ug, v), P

with the enriched trial space \f,f defined by IAY U
......... Ug
v = ot = pf n € ). A
SN
L’ Y/
General Dirichlet BC: If u = g on 0f), then a b
pi =g—up ondQ, | 179

with ug the PINN prior.
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Convergence analysis

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote u, € V,, the solution of (Py) with Vj, the standard trial space. Then,

|U = uh|H1 < G hk|u|,_,k+1,

llu = upllz < C2 WY ulperr .

Theorem 2: Convergence analysis of the enriched FEM [F. Lecourtier et al., 2025]

We denote u,',*' € V,T the solution of (P,;") with V,f,r the enriched trial space.
Then,

v — u | < %ﬁL (Con At

lu—uf]le < % (Ciz W |l ) -

J

Gains of the additive approach.
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1st problem considered

Problem statement: Considering an Anisotropic Elliptic problem with Dirichlet BC:

—div(DVu) =f, in ,
u=0, on 09,

with Q = [0,1]2 and M = [0.4,0.6] x [0.4,0.6] x [0.01,1] x [0.1,0.8] (p = 4).

Right-hand side :

Y 2 . 2
o) = exp (TR )

Diffusion matrix : (symmetric and positive definite)

ex?+y2 (e—1)xy
D = .
(6 1) ((e -1y x2+e?

PINN training: Imposing BC exactly with a level-set function.
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Error estimates : 1 set of parameters.

p = (0.51,0.54,0.52, 0.55)

10-10 "
5.55e-3 1.11e-2 2.24e-2 4.56e-2 9.43e-2

—#- FEMP; —— FEM P2, —— FEM PP3
-B-AddP; -@- AddPPy -4- Add P3
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Numerical results

Error estimates : 1 set of parameters. Gains achieved : n, = 50 sets of parameters.

p = (0.51,0.54,0.52,0.55) S = {,N), . .,HW}
L2

Gains in L2 rel error
of our method w.r.t. FEM

k min max mean
10~5 - or
1 7.12 8257 35.67
2 354 35.88 18.32
3 133 26.51 8.32
10_10 1 I I I I h
5.55e-3 1.11e2 2.24e-2 4.56e-2 9.43e-2 N =20
- +
% FEMP; —o— FEMP, —— FEM P Gain: [ju — unlli2/flu — uy |2
-B- AddP; - - AddPy -4 - Add P3

Cartesian mesh : N% nodes.
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2nd problem considered

Problem statement: Considering the Poisson problem with mixed BC:
—Au =¥, in Qx M,
u=g, on I'tx M,
du

— +u=gg, onI;xM,
on

with Q = {(x,y) € R?, 0.25 <x* +y? <1} and M = [2.4,2.6] (p = 1).
T'c and T'; are the outer and inner boundaries of the annulus €2, respectively.

In (,ul\/x2 —|—y2)

In(4) ’

Analytical solution :
ubp)=1-—

Boundary conditions :

gbep)=1- lﬁl(&l)) and galcip) = 2+ /) _1;1(]4(51)

PINN training: Imposing mixed BC exactly in the PINN".

"[Sukumar and Srivastava, 2022]

References
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L4
Numerical results
Error estimates : 1 set of parameters. Gains achieved : n, = 50 sets of parameters.
— — 1) "
n =251 8_{u( ,...,/,l,(”)}
L2 .
10-11 Gains in L rel error

of our method w.r.t. FEM

k min max mean
1 1512 13772 555
2 31 7746 5841
3 1872 2149  20.6

1076+

10-H I
‘ ‘ ‘ ‘ ‘ )
1.10e-2 2.20e-2 4.35e-2 8.70e-2 1.67e-1 h=1.33-10

& FEMP, —o FEM Py —— FEM P; Gain': [lu = unl2/llu — uy .2
-H- AddP; -e- AddPy -4 - Add Ps
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Numerical solutions

1st problem : p = (0.46,0.52,0.05,0.12) (k=2h=09,43-10"2)
Solution u Absolute FEM error |u — up| Absolute additive error [u — (ug + pji)|
1 T T 1
2.1073 1072 1072
0.75 = - 0.75
1074 10-4
y 0 y
10-¢ 10-6
0.25 [ . , 025
—2.10 1078 1078
| | 0 » & 4
0 0.25 T 0.75 1 0 0.25 T 0.75 1
2nd problem: p = 2.51 k=1h=1,67-10"1)
; Solution u Absolute FEM error [u — up| Absolute additive error |u — (ug + p;l )|
107! 1 101
0.5 N 0.5
1073 1073
v y
—5 —~5
o5 11 R 10
-1 107 -1 1077

—1 . . 1
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Learn a regular levelset

Theorem 3: [Clémot and Digne, 2023]

If we have a boundary domain I, the SDF is solution to the Eikonal equation
Ve[| =1, x€ O e

p(X) =0, xeTl ::\ émm\“\

Vo(X)=n, XeT 3/[“\\5

with O a box which contains €2 completely and n the exterior normal to I"

\Mlu,/

J
Objective: Move on to complex geometries by using a levelset function to
+ Sample points in the domain €2 for the PINN training

+ Impose exactly the boundary condition in PINN [Sukumar and Srivastava, 2022]

How to learn a regular levelset ? with a PINN by adding a regularization term

./reg:/ |A¢|27
O

and a sample of boundary points that considers the curvature of I". ¥

10/21
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loss history, min = -9.07e+00

approximation, u=1.0

residual, u=1.0, L, norm: 1.74e-01
05

1.408
102 1232 013
10! 1.056
100 0.880
101 0.704
0.528
-2 — -
10 tut.adl Iusls min 0352
~—— residual
10~
—— regularization 0176
107 —— dirichlet 0.000
- —— neumann - min -0.176
107 :
0 250 500 750 1000 1250 1500
o Exact and hed boundary points Max phi: 0.009532877165138232, Mean phi: 0.00;
025 025 , I
S y
0.00 0.00 / 0.00
025 -025 0006 025
050 -0s0 050
0.004
075 -075 075
100 100 100
0.002
Exact boundary points
-1 Exact BC -125 1257 Exact normals
Approximated BC = Approximated normals
a 150
050025 000 035 050 075 100 135 150 2050 —025 o0b0 025 030 075 100 125 150

50
~050 -025 000

025 050 075 100 125
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Problem considered

Problem statement: Considering the Poisson problem with Dirichlet BC:

—Au=f, in QAxM,
u=0, onIxM,

with Q = [—0.57,0.57]% and M = [—0.5,0.5]% (p = 2).
Analytical solution :

X — 111)2 — 1p)?
u(x;“)_exp<( p)” + (v — p2)

2(0.15)2

> sin(2x) sin(2y).

PINN training: Imposing Dirichlet BC exactly in the PINN.

References
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Adaptive mesh refinement
Adaptive refinement loop using Dorfler marking strategy.

Standard FEM

- — SOLVE — ESTIMATE — MARK — REFINE — ---
on up Tlres, T

Local residual estimator (in L2 norm): Let T be a cell of T, .
1
Mres,r = W1 Aun + foll 2y + 3 > hell[Vun - n]l| e
EEOT

with he the size of @ and considering the Poisson problem.

LECOURTIER Frédérique
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Adaptive mesh refinement

Adaptive refinement loop using Dorfler marking strategy.

Additive Approach

Aﬂ" IV
A" A
Jdl. Java

AP 1/
Vv

- — SOLVE — ESTIMATE — MARK — REFINE — ---
+
onp, Tres, T

Local residual estimator (in L2 norm): Let T be a cell of Ty .
1
2 2 2 2
Mer = B ((Buo)n + D) + filllry + 5 D hell[Vpi - il
E€OT
with he the size of @ and considering the Poisson problem.
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Adaptive mesh refinement

Adaptive refinement loop using Dorfler marking strategy.

Additive Approach - No resolution

- — INTERPOLATE — ESTIMATE — MARK — REFINE — ---
ug Tlres, T

Local residual estimator (in L2 norm): Let T be a cell of 75 .
2 2 2
Nres,1 = hT”(AU9)h +fh||L2(T)

with he the size of @ and considering the Poisson problem.

LECOURTIER Frédérique
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Numerical results

10-140--%-
1072

102

B 10t
Naots T
N . N Time (s)
10 10 10 10-2 101 100
-6 FEM (adapt) -+ Add (adapt) ~@ - Add - no solve (adapt)
- FEM (unif) -# Add (unif) [ FEM (adapt) -0 Add (adapt) =8+ Add - no solve (adapt) |

/\ Results obtained on a laptop GPU (Time measurements polluted by external factors).

Ideas for improving results : Additive approach (no resolution).

time
\ Interpolate only mesh points added in the refinement process.

error
\ Use another metric such as curvature, rather than residual error.

References
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Problem considered
Objective: Extend the additive approach to non linear PDEs.

Problem statement: Considering the non linear Poisson problem with Dirichlet BC:
—div((1+4u")Vu) =f, in Q,
u=1, on 09Q.
with Q = [—0.57,0.57]? and M = [-0.5,0.5]% (p = 2).

Analytical solution : ) )
u(x; p1) = 1+ exp (— (= )"+ = o) ) sin(2x) sin(2y)

2

PINN training: Imposing BC exactly with a level-set function.

LECOURTIER Frédérique
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Newton method
We want to solve the non linear system: Np - number of degrees of freedom.

F(u) =0 M
with F : R¥ — RM a non linear operator and u € R the unknown vector.

Algorithm 1: Newton's method to solve (1) [Aghili et al., 2025]

Initialization step: set u® = yy;

fork > Odo
Solve the linear system F(u) + F ()31 = 0 for 64+
Update u®t1) = y® 4 gl+1).

end

Standard version:
Initialization with a constant value ug. For instance, ug = 1.

DeepPhysics version: [Odot et al., 2021]
Initialization with a PINN solution ug = ug.

LECOURTIER Frédérique
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Newton method

We want to solve the non linear system: Np : number of degrees of freedom.
Flp+ +ug) =0 (1

with F : R¥ — RM a non linear operator and p. € R the unknown vector.

Algorithm 2: Additive approach to solve (1)

Initialization step: set pf) =0;

fork > 0 do
Solve the linear system F(p(f) +up) + F’(p(ﬁ + ug) ¥t = 0 for gD,

Update pfrl) = pSﬁ) + gU+D),

end

Advantage compared to DeepPhysics:

ug is not required to live in the same space as p4.

LECOURTIER Frédérique
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-
107
Wil ™ g5 [+ swaws | Number of iterations :
101 m o =8+ DeepPhysics P
m P -m- AddP ;i i
wodment T H A | A + Standard Newton: 8 iterations.
10— o T =+ DeepPhysics P?
i T -e- AddP? . iccr A ;
ot :/ . P o e DeepPhysics: 4 iterations.
108 B =&+ DeepPhysics P . ) i
oo a” A Aap + Additive approach: 4 iterations.
10710 Jae=”"
h
[T E——
A 12
0%
L) £y
.‘o' 10~ A
10~ R
10 107
10
107
Time (s)

102 107" 107

1071

Time (s)
10t 109 10!

-# Standard P -+ DecpPhysics P! -8+ Add P' |

[+ Standard P* =@+ DecpPhysics P -0 Add #° | [ Standard B =+ DecpPhysics B =4+ Add P'
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Supplementary work I

&

> 2024/2025:

» 64h of Computer Science Practical Work - L1S2 and L2S3 (Python) / L3S6 (C++)
» 3 days supervising a group of high school girls in RJMI
("Rendez-vous des Jeunes Mathématiciennes et Informaticiennes”)

» 2023/2024 : 50h of Computer Science Practical Work - L2S3 (Python) / L3S6 (C++)

References

Training courses (Total : 176h35)

» A dozen seminars organized by IRMA (= 10h)

» 1 Deep Learning introductory course - FIDLE (= 40h)

» 2 workshops on Scientific Machine Learning (= 2 X 21h)
» 1 summer school on "New Trend in computing” (=~ 27h)

» several cross-disciplinary courses - Methodology, scientific English, etc. (== 58h)

J
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Supplementary work I1

>

ICOSAHOM 2025, Montréal - July 2025 (Coming soon...)
"Enriching continuous Lagrange finite element approximation spaces using neural
networks”

DTE & AICOMAS 2025, Paris - February 20, 2025
"Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems
on 2D Geometries”

Exama project, WP2 reunion - March 26, 2024
"How to work with complex geometries in PINNs ?”

Retreat (Macaron/Tonus) - February 6, 2024
"Mesh-based methods and physically informed learning”

Team meeting (Mimesis) - December 12, 2023
"Development of hybrid finite element/neural network methods to help create
digital surgical twins"”

)

19/21
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https://icosahom2025.org/
https://dte_aicomas_2025.iacm.info/organizers
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2025_02_20.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2025_02_20.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2024_03_26.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2024_02_06.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2023_12_12.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2023_12_12.pdf
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Supplementary work III

Posters

>

>
>

EMS-TAG-SciML 2025, Milan - March 24, 2025 - "Enriching continuous Lagrange
finite element approximation spaces using neural networks"”

CJC-MA 2024, Lyon - October 29, 2024 - "Combining Finite Element Methods and
Neural Networks to Solve Elliptic Problems on 2D Geometries”

MSII poster day, Strasbourg - October 24, 2024
SciML 2024, Strasbourg - July 08, 2024

References

J/

-

Publications

» Enriching continuous lagrange finite element approximation spaces using

neural networks. (submitted in February 2025, M2AN journal)
H. Barucq, M. Duprez, F. Faucher, E. Franck, F. Lecourtier, V. Lleras, V.
Michel-Dansac, and N. Victorion.

/
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https://www.mate.polimi.it/events/EMS-TAG-SciML-25/index.php
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/poster/2025_03_24.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/poster/2025_03_24.pdf
https://cjc-ma2024.sciencesconf.org/program?lang=fr
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/poster/2024_10_24.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/poster/2024_10_24.pdf
https://irma.math.unistra.fr/~micheldansac/SciML2024/participants.html
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Conclusion

Conclusion References
o

Enriched finite element method using PINNs :
+ PINNs are good candidates for the enriched approach.
+ Numerical validation of the theoretical results.

* The enriched approach provides the same results as the standard FEM method,
but with coarser meshes. = Reduction of the computational cost.

We have also tested a multiplicative approach.

New lines of research :
+ The treatment of complex geometries is progressing.
* New PDEs begin to be considered, in particular non-linear problems.

+ Other methods for improving the additive approach are being studied, including
a posteriori error estimators.

LECOURTIER Frédérique
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A1.1 — Physics-Informed Neural Networks

Standard PINNs' (Weak BC) : Find the optimal weights §*, such that

6 = arg;nin (wr Jr(0) + wy Jn(0)), (Po)
with
30) = Lo S |£ (g 0x, p2);x, ) — fx, )| dxdlps,
boundary loss 1(0) = [y S ua(x, 12) — g(x, 1) |*dxdp,

where ug is a neural network, g = 0 is the Dirichlet BC.
In (Pg), wr and wy, are some weights.

Monte-Carlo method : Discretize the cost functions by random process.

"[Raissi et al., 2019]

LECOURTIER Frédérique
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Appendix 1 : Standard methods Appendix 2 : Data-driven vs Physics-Informed training Appendix 3 : Multiplicative approach Appendix 4 : More
00eo 0000 0000 00

A1.1 — Physics-Informed Neural Networks
Improved PINNs' (Strong BC) : Find the optimal weights 6* such that
0* = argmin (w, J,(0) + wy45(6)),
0

with w, = 1 and

jr(e) = fM fQ |£(U9(X, H);X, H) _f(xa u)’2dXdu,

where uy is a neural network defined by /

ug (x, ) = p(x)wo (x, ) + g(x, p),

with ¢ a level-set function, wy a NN and g = 0 the Dirichlet BC.
Thus, the Dirichlet BC is imposed exactly in the PINN : ug = g on 9f).

1[Lagaris et al., 1998; Franck et al., 2024]
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Appendix 1 : Standard methods Appendix 2 : Data-driven vs Physics-Informed training Appendix 3 : Multiplicative approach
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A1.2 — Finite Element Methods'

Variational Problem :

Appendix 4 : More
00

Find u, € VY such that, Vv, € V), a(up, vi) = I(vh), (Pr)

with h the characteristic mesh size, a and / the bilinear and linear forms given by
1
a(up,vy) = —/ DVuy - Vv, +/ Rup vy —l—/ v C-Vup, I(vy) = /fvh,
Pe Jq Q Q Q
and \/2 the finite element space defined by
Vg = {Vh (S CO(Q), VK € 777, Vh|K (S Pk,vh‘ag = O},

where Py is the space of polynomials of degree at most k.

Linear system : Let (¢, . .., ¢y, ) a basis of VY. = (K, . ki }
F|nd U c RNh SLICh that AU = b (N : number of elements)
with

A= (a(dn,$)) 1<y, ad b= (1(8)); ey, -

"[Ern and Guermond, 2004]
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A2 — Problem considered

Appendix 3 : Multiplicative approach
00000

Problem statement: Consider the Poisson problem in 1D with Dirichlet BC:
—Ogu=f, in Qx M,
u=0, on 90 x M,
with = [0,1]2 and M = [0, 1]3 (p = 3 parameters).

Analytical solution:  u(x; ) = pq Sin(2mx) + o sin(4mx) + pg sin(67x) .

Construction of two priors: MLP of 6 layers; Adam optimizer (10000 epochs).
Imposing the Dirichlet BC exactly in the PINN with ¢(x) = x(x — 1).
+ Physics-informed training: N, = 5000 collocation points.

Neol

Z ’axxu*‘) co|7 “col) Jrf( Xcol) H’Eo)l) |2'

+ Data-driven training: Ny, = 5000 data.

coI

1 Ndata

Jaata (0) =

Xdata) Hdata Xdata) Hdata

’udata @ ., 0 ) — uf @ .0 )|2

N,
data i—1
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00 0000 0000 00

A2 — Priors derivatives

pM =(0.3,0.2,0.1)

Solutions First-order derivatives Second-order derivatives Absolute errors
T T T

92, u

—  |u—ul E
|0zu — Opup| |4
— 107, u — 83, u0| |

Il Il \j Il Il Il E
02 04 06 0. 0 02 04 06 08 1 0 02 04 06 08 1
P @ @ P
First-order derivatives Second-order derivatives Absolute errors
. S e -
52
zd”l“ Te-l
02 _uduin
le-3 Y ~’W { E
0 les E
el e

|0pu — Dpug™ E
— 192, u— 92, ug™"|

I I I I I V') I I
0 02 04 06 08 1 0 02 04 06 0.8 1 0 02 04 06 08 1 0 02 04 06 0.8 1
Ed

x Ed x

LECOURTIER Frédérique
4/10 Development of an hybrid finite element and neural network method



Appendix 1 : Standard methods Appendix 2 : Data-driven vs Physics-Informed training Appendix 3 : Multiplicative approach Appendix 4 : More
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A2 — Additive approach in P,

1 set of parameters: p!) = (0.3,0.2,0.1)

FEM PINN prior ug Data prior uj**
N error N error gain error gain
16 5.18-1072 16 1.29-1073 40.34 3.51-1073 14.78
32 1.24-1072 32 3.49-107% 3541 8.8-107* 14.06

50 set of parameters:

Gains in L2 rel error of our method w.r.t. FEM

PINN prior uy Data prior uj™*?

N min max mean min max mean

20 2649 271.92 140.74 6.91 60.85 26.12
40 234 25837 134.11 7.13 39.34 20.55

N: Nodes.
LECOURTIER Frédérique
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A3 — Multiplicative approach

Liffted problem : Considering M such that uy = u+ M > 0 on (),

{E(UM) =f inQ,

uy = M, on Of).
Variational Problem : Let ug y = up + M € M + H1(Q) N HY ().
Find p,;’ € 1+ V) such that, Vv, € V), a(ug.u py, uguvn) = l(ugmvi),  (Py)
with the enriched trial space th defined by
{uyy=uompy, Py €l+ 7

General Dirichlet BC : If u = g on 0f), then

M
JJe _ & on 09,

Ug.m

with ug y the PINN prior.
LECOURTIER Frédérique
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A3 — Convergence analysis

Theorem 4: Convergence analysis of the enriched FEM [F. Lecourtier et al., 2025]

We denote v, € V;* the solution of (P,°) with V,* the enriched trial space.
Then, denoting u," = ;' — M,

X u llue mll 1,00 k
u—u 1 < | |2 B (C 1 WUy 1)
| h |H X o | o1 |U‘H‘7+1 H | |H+ 9
2
X u lluo,mll,1,00 K+1
b e < | Cope || Ml | b))
I b lliz <| Com uom g1 lulyatr a Jul s

with
Com = ||U(3,}4||L°° + 2|U;b|w1vw + |“({L|Wv“~

LECOURTIER Frédérique
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0000 0000 0000 O

A3 — Additive vs Multiplicative

Theorem 5: [F. Lecourtier et al., 2025]

We have
Uy llugmllyr,o0 lu—ug | h+1
o | gt lulygt1 M—oo | lulg+1r P

in H! semi-norm and

uu llue,ull 71,00

|u—ug |, pot1
ug,m

Ha+1 |U|Hq+1 M—00 ‘ulHk+1

Co.m

)

in L2 norm.

=

Multiplicative and Additive approaches.

LECOURTIER Frédérique
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Considering the 1D Poisson problem of [Asjsiqelhao.
Error estimates : 1 set of parameters.

2 p =(0.3,0.2,0.1)

10—2

10—*

10761

; h
3.92e-3 7.87e-3 1.59e-2 3.23e-2 6.67e-2

- FEMP; --®- MultPy (M=3) -B- Add P,
—— FEM Py --B- Mult Py (M=100)
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Dorfler marking strategy : [Dorfler, 1996]
Find M}, C 7, of minimal cardinality such that

Z 773,T >0 Z nf,r,

TEM, 7€Th

with 76 7 a local estimator ' and 6 € (0, 1).

"For instance, the residual estimator. [Ainsworth and Oden, 1997]




	Introduction
	Enriched finite element method using PINNs
	Additive approach
	★✩Numerical results

	New lines of research
	Complex geometries
	★✩A posteriori error estimates
	★✩Non linear PDEs

	Supplementary work
	Conclusion
	References
	Appendix
	Appendix 1 : Standard methods
	Appendix 2 : Data-driven vs Physics-Informed training
	Appendix 3 : Multiplicative approach
	Appendix 4 : More


