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Scientific context

Context : Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid / neural network | method.

accurate

Parametric elliptic convection/diffusion PDE : For one or several p € M, find
u: 2 — Rsuch that

L(usx, p) = flx, ), (P)

where L is the parametric differential operator defined by
1
L{sxp) 2 u e RO plu+ C(p) - Vu = 2V - (0(x, p) V),

and some Dirichlet, Neumann or Robin BC (which can also depend on p).
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Pipeline of the Enriched FEM
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OFFLINE : PINN training ]
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ug : prediction of

3 € : space domain '
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PINN evaluation

ug : prediction for

the parameter u

FEM solver
enriched by uy

Remark : The PINN prediction enriched Finite element approximation spaces.
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Physics-Informed Neural Networks

Standard PINNs' (Weak BC) : Find the optimal weights §*, such that
0* = arg;nin (wr 1:(0) + wb Jn(6)),

with

30) = Lo S |£ (g 0x, p2);x, ) — fx, )| dxdlps,

2
boundary loss I6(0) = [1q Joq |ue(x, 1) — g(x, 1) | "dxdp,

where ug is a neural network, g = 0 is the Dirichlet BC.

In (Pg), wr and wy, are some weights.

Monte-Carlo method : Discretize the cost functions by random process.

"[Raissi et al., 2019]
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Physics-Informed Neural Networks

Improved PINNs' (Strong BC) : Find the optimal weights 6* such that
6* = argmin (w, J(0) + wy45(0)),

with w, = 1 and '

jr(e) = fM fQ |£(U9(X, }L);X, H) _f(xa I"’)’2dXdu,

M={p=0}

where uy is a neural network defined by /

ug (x, ) = p(x)wo (x, ) + g(x, p),

TT—— >0

with ¢ a level-set function, wy a NN and g = 0 the Dirichlet BC.
Thus, the Dirichlet BC is imposed exactly in the PINN : ug = g on 9f).

1[Lagaris et al., 1998; Franck et al., 2024]
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Finite Element Method'

Variational Problem :
Find u, € VJ such that, Vv, € V), a(up, vi) = 1(vh), (Py)

with h the characteristic mesh size, a and / the bilinear and linear forms given by

1
a(up,vy) = E/DVuh~Vvh+/Ru,,v,,-i—/th-Vuh, l(vh):/fv,,,
Q Q Q Q

and \/2 the finite element space defined by
Vg = {Vh S CO(Q), VK € 777, Vh|K S Pk,vh‘ag = 0},

where Py is the space of polynomials of degree at most k.

Linear system : Let (1, . . ., ¢y, ) a basis of VY. o= K1, i}
F|nd U c RNh SUCh that AU = b (N : number of elements)
with

A= (a(d,$))1<ijey, ad b= (1(8)); ey, -

"[Ern and Guermond, 2004]
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Additive approach
Variational Problem : Let ug € H*"1(Q) N H{(Q).
Find p;~ € V2 such that, Vv, € V2, a(p,, vi) = I(vi) — a(ug, v), P
with the enriched trial space \f,f defined by
A u
A o
A {uﬁ‘ =up+p, pf € v‘,3} )
General Dirichlet BC : If u = g on 0f), then ‘4\,
P =g—ug onof, u
......... Uy
with ug the PINN prior. P,
ph I
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Convergence analysis

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote u, € V,, the solution of (Py) with Vj, the standard trial space. Then,

|U = uh|H1 < G hk|u|,_,k+1,

llu = upllz < C2 WY ulperr .

References

Then,

lu—uf | <

lu = up ez <

|u—ug | p+1

[ul et1

lu—ug | p+1

[ul 1

Theorem 2: Convergence analysis of the enriched FEM [Lecourtier et al., 2025]

We denote u,',*' € V,T the solution of (P,;") with V,f,r the enriched trial space.

(CHI hk|U|Hk+1) 5

(CLz pktt |U|Hk+1) .

J

Gains of the additive approach.
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Problem considered

Problem statement: Consider the Poisson problem with Dirichlet BC:
—Au=f in QxM,
{ u=0, on 90 x M,
with Q = [—0.57,0.57]? and M = [—0.5,0.5]2 (p = 2 parameters).

Analytical solution :

u(x, ) = exp (— (= pm)” ; v= M)Z) sin(2x) sin(2y).

PINN training: MLP of 5 layers; LBFGs optimizer (5000 epochs).
Imposing the Dirichlet BC exactly in the PINN with the levelset ¢ defined by

o(x) = (x+ 0.5m)(x — 0.57)(y + 0.57) (y — 0.5m).

Training time : less than 1 hour on a laptop GPU.

References
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p = (0.05,0.22)

12

100

10~ 12— ‘ ‘ h
1.74e-2 3.50e-2 7.05e-2 1.43e-1 2.96e-1

—&- FEMP; —— FEM P2, —— FEM PP3
-B-AddP; -@- AddPPy -4- Add P3




Introduction How improve PINN prediction with FEM ?
000

Numerical results

Error estimates : 1 set of parameters.

Numerical results

Conclusion References
O 000@0 00000 0000 00

Gains achieved : n, = 50 sets of parameters.

p® = (0.05,0.22) S = {,N), . .,HW}
L2

1094

Gains in L2 rel error
of our method w.r.t. FEM

k min max mean
1 134.32 377.36 269.39
2 67.02 164.65 134.85
3

39.52 72.65 61.55
10712 1 1 1 — h
1.74e-2 3.50e-2 7.05e-2 1.43e-1 2.96e-1 N =20
- +
-8 FEMP; —e— FEMP; —— FEMP3 Gain: [ju — unlli2/flu — uy |2
-B-AddP; -e- Add PPy -4 - AddPs

Cartesian mesh : N% nodes.
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Numerical results

Error estimates : 1 set of parameters. Ngots required to reach the same errore:

pM = (0.05,0.22)
L2 Ndofs
100 4 k e FEM Add
21073 14,161 64
.107* 143,641 576

-107* 6,889 225
-107° 31,329 1,089

-107% 6,724 784
-107% 20,164 2,704

I W B S e e

10712 1 1 1 1
1.74e-2 3.50e-2 7.05e-2 1.43e-1 2.96e-1

—&— FEMP; —e— FEM Py —— FEM P3
-B-AddP; -e- AddP; -4 - AddP3
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Problem considered

Problem statement: Considering an Anisotropic Elliptic problem with Dirichlet BC:
—div(DVu) =f, in Q,
u=0, on 909,

with Q = [0,1]2 and M = [0.4,0.6] x [0.4,0.6] x [0.01,1] x [0.1,0.8] (p = 4).

Right-hand side :

Diffusion matrix : (symmetric and positive definite)
2 2
ex“ + €e— 1)x
D) = (D),
(e—1xy x*+ey

PINN training: MLP with Fourier Features' of 5 layers; Adam optimizer (15000
epochs). Imposing the Dirichlet BC exactly in the PINN with a level-set function.
T[Tancik et al., 2020]
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Error estimates : 1 set of parameters. Gains achieved : n, = 50 sets of parameters.

p® = (0.51,0.54,0.52, 0.55) S = {,N), . .,HW}
L2
Gains in L rel error
of our method w.r.t. FEM

k min max mean
10~5 o or

1 7.12 8257 35.67

2 3.54 35.88 18.32
0 3 133 2651  8.32

107 1. 1 1 1 — h
5.55e-3 1.11e2 2.24e-2 4.56e-2 9.43e-2 N =20

.- +
% FEMP; —o— FEMP, —— FEM P Gain: [ju — unlli2/flu — uy |2
-m- AddP; -e- AddPy -4 - Add Ps

Cartesian mesh : N% nodes.
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Numerical results

Solution u FEM solution u, Additive solution u;" Additive correction p;
1 T T T T T T T T
] ] ] -4
21073 | M 2.10-3 M 20073 | | § 310
\ 0 0
| - 2 10-21
—-2.10 —3.107*
Il Il L Il
0 025 o 075 1 0 025 o 075 1

Absolute additive error |u — (ug + p,t)\

1078

u® =(0.46,0.52,0.05,0.12)
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Problem considered

Problem statement: Considering the Poisson problem with mixed BC:
—Au =, in Qx M,
u=g, on I'fx M,

0
—u+u:gR, on I x M,
on

with @ = {(x,y) € R?, 0.25 <x*+y* <1}and M = [2.4,2.6] (p = 1).

Analytical solution :

In (p14/x% 4 y?)
R R
Boundary conditions :

In(p1)

gxp)=1- Tn(4) and gp(x; p) =2+ 4-1Inlu)

In(4)

PINN training: MLP of 5 layers; LBFGs optimizer (4000 epochs).
Imposing the mixed BC exactly in the PINN'.

"[Sukumar and Srivastava, 2022]
LECOURTIER Frédérique
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Error estimates : 1 set of parameters.

pM =251

1076

10—11 ..

. . ; h
1.10e-2 2.20e-2 4.35e-2 8.70e-2 1.67e-1

—&— FEMP; —e— FEM Py —— FEM P3
-B-AddP; -e- AddP; -4 - AddP3

Numerical results Conclusion

References
O 00000 00000 00eO0

Gains achieved : n, = 50 sets of parameters.

S = {I_l,(l)7...,/,l,(np)}

Gains in L2 rel error
of our method w.r.t. FEM

k min max mean
1 1512 13772 555
2 31 7746 5841
3 1872 2149  20.6

h=1.33-10""1

Gain: [ju — ul|i2/|lu — ujf ||,2
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O 00000 00000 OO0Oe

Additive solution u,

Conclusion
00

Additive correction p;

14/15

pM =251

Solution u FEM solution uj,
2
1.5
1
0.5
0
Absolute additive error [u — (ug + pii)|
1 T T 107! 1 107!
0.5 |- 0.5
1073 1073
Y Y
1077 10-5
—0.5 - —0.5
1 | | 10-7 1 10-7
-1 —0. 5

References

<1073

-107%

<1078
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Conclusion and Perspectives

+ PINNs are good candidates for the enriched approach.

+ Numerical validation of the theoretical results.

+ The enriched approach provides the same results as the standard FEM method,

but with coarser meshes. = Reduction of the computational cost.

Perspectives :

+ Consider non-linear problems.

+ Use PINN prediction to build an optimal mesh, via a posteriori error estimates.

+ Validate the additive approach on more complex geometry.

LECOURTIER Frédérique
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Appendix 1 : Data-driven vs Physics-Informed training
00000

o] lele]

Problem considered
Problem statement: Consider the Poisson problem in 1D with Dirichlet BC:
—Ogu=f, in Qx M,
u=0, on 90 x M,
with = [0,1]2 and M = [0, 1]3 (p = 3 parameters).
Analytical solution:  u(x; ) = pq Sin(2mx) + o sin(4mx) + pg sin(67x) .
Construction of two priors: MLP of 6 layers; Adam optimizer (10000 epochs).

Imposing the Dirichlet BC exactly in the PINN with ¢(x) = x(x — 1).
+ Physics-informed training: N, = 5000 collocation points.

;p pendix

Neol

Z ’axxu*‘) co|7 “col) Jrf( Xcol) H’Eo)l) |2'

coI

+ Data-driven training: Ny, = 5000 data.

Ndata
1 data (- 1) — uxl; ).

}u xdata’ Hyata Xgatas Mdata

Jaata (0) =

N,
data i—1
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00 0000

Priors derivatives

pM =(0.3,0.2,0.1)

Solutions First-order derivatives Second-order derivatives Absolute errors
T T T

92, u

—  |u—ul E
|00t — Bypuo| | 4
— 107, u — 83, u0| |

0 02 04 06 08 1 0 02 04 06 0.8 1 0 02 04 06 08 1 0 02 04 06 0.8 1
E z E z
Solutions First-order derivatives Second-order derivatives Tel Absolute errors
. . . T © T T T 3
52
Ozt Te-1

Oflu(élntn
le-3 Y "W( E
le-5 E
-0.2 ler fl—  lu—ugre [

|0pu — Dpug™ E
— 192, u— 92, ug™"|

I I I LV I I
0 02 04 06 08 1 0 02 04 06 0.8 1 0 02 04 06 08 1 0 02 04 06 0.8 1
x Ed x Ed
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Additive approach in P,
1 set of parameters: p!) = (0.3,0.2,0.1)
FEM PINN prior ug Data prior uj**
N error N error gain error gain
TG 5.18 1072 TG 1.29-1073  40.34 3.51-1073 14.78
32 1.24-1072 32 349-107* 3541 88-107*% 14.06

50 set of parameters:

Gains in L2 rel error of our method w.r.t. FEM

PINN prior uy Data prior uj™*?

N min max mean min max mean

20 2649 271.92 140.74 6.91 60.85 26.12
40 234 25837 134.11 7.13 39.34 20.55

N: Nodes.
LECOURTIER Frédérique
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Multiplicative approach

Liffted problem : Considering M such that uy = u+ M > 0 on (),

{E(UM) =f inQ,

uy = M, on Of).
Variational Problem : Let ug y = up + M € M + H1(Q) N HY ().
Find p,;’ € 1+ V) such that, Vv, € V), a(ug.u py, uguvn) = l(ugmvi),  (Py)
with the enriched trial space th defined by
{uyy=uompy, Py €l+ 7

General Dirichlet BC : If u = g on 0f), then

M
JJe _ & on 09,

Ug.m

with ug y the PINN prior.
LECOURTIER Frédérique
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Convergence analysis

Theorem 3: Convergence analysis of the enriched FEM [Lecourtier et al., 2025]

We denote v, € V;* the solution of (P,°) with V,* the enriched trial space.
Then, denoting u," = ;' — M,

Um

40 mlly1 .00 ( k )
oL Cyr ¥ |u|petr)

X
u—u; |;n <
| h |H = Ha+1 |“‘Hq+1

lluo mllgn,
lu—ull2 <|Com ﬁ,”; i T—uﬂ‘;ﬁi (Cz hk+1|u|,_,k+1).

with
Com = ||U(3,}4||L°° + 2|U;b|w1vw + |“({L|Wv“~
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o 0000 0000

Comparison of the two enriched methods

Theorem 4: [Lecourtier et al., 2025]

We have
Uy llugmllyr,o0 lu—ug | h+1
o |get1 bt [ mooo | ulgrr P

in H! semi-norm and

HUO,MHﬁ,l,oo |U—U9\,_,k+1

Ha+1 |U|Hq+1 M—00 ‘ulHk+1

Um
ug,m

Co

)

in L2 norm.

=

Multiplicative and Additive approaches.
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Considering the 1D Poisson problem of (TSN,
Error estimates : 1 set of parameters.

e =1(0.3,0.2,0.1)

10—2

10—4

10—6,

; h
3.92e-3 7.87e-3 1.59e-2 3.23e-2 6.67e-2

—&— FEMP; % MultP; (M=3) -m-AddP;
—o— FEM P3 --B- Mult P; (M=100)
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