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Scientific context

Context : Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.
accurate quick + parameterized

Parametric elliptic convection/diffusion PDE : For one or several µ ∈ M, find
u : Ω → R such that

L
(
u ; x,µ

)
= f(x,µ), (P )

where L is the parametric differential operator defined by

L(·; x,µ) : u 7→ R(x,µ)u+ C(µ) · ∇u− 1

Pe
∇ · (D(x,µ)∇u),

and some Dirichlet, Neumann or Robin BC (which can also depend on µ).
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Pipeline of the Enriched FEM

OFFLINE : PINN training

Inputs
Ω : space domain
M : parameter domain Parametric PINN

Output
uθ : prediction of

the PDE solution u

ONLINE : PINN evaluation + Enriched FEM resolution

Inputs

Ω : space domain

One given µ ∈ M
Trained PINN

PINN evaluation

uθ : prediction for

the parameter µ
FEM solver

enriched by uθ

Output

enriched FEM solution

(depending on the mesh size h)

Remark : The PINN prediction enriched Finite element approximation spaces.



LECOURTIER Frédérique
Combine FEM and NN to solve Elliptic Problems on 2D geometries

3/15

3/15

Introduction How improve PINN prediction with FEM ? Numerical results Conclusion References

Physics-Informed Neural Networks
Standard PINNs1 (Weak BC) : Find the optimal weights θ⋆, such that

θ⋆ = argmin
θ

(
ωr Jr(θ) + ωb Jb(θ)

)
, (Pθ)

with

residual loss

boundary loss

Jr(θ) =
∫
M

∫
Ω

∣∣L(uθ(x,µ); x,µ)− f(x,µ)
∣∣2dxdµ,

Jb(θ) =
∫
M

∫
∂Ω

∣∣uθ(x,µ)− g(x,µ)
∣∣2dxdµ,

where uθ is a neural network, g = 0 is the Dirichlet BC.

In (Pθ), ωr and ωb are some weights.

Monte-Carlo method : Discretize the cost functions by random process.

1[Raissi et al., 2019]
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Physics-Informed Neural Networks
Improved PINNs1 (Strong BC) : Find the optimal weights θ⋆ such that

θ⋆ = argmin
θ

(
ωr Jr(θ) +����ωb Jb(θ)

)
,

with ωr = 1 and

residual loss Jr(θ) =
∫
M

∫
Ω

∣∣L(uθ(x,µ); x,µ)− f(x,µ)
∣∣2dxdµ,

where uθ is a neural network defined by

uθ(x,µ) = φ(x)wθ(x,µ) + g(x,µ),

with φ a level-set function, wθ a NN and g = 0 the Dirichlet BC.

Thus, the Dirichlet BC is imposed exactly in the PINN : uθ = g on ∂Ω.

1[Lagaris et al., 1998; Franck et al., 2024]
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Finite Element Method1

Variational Problem :

Find uh ∈ V0h such that, ∀vh ∈ V0h , a(uh, vh) = l(vh), (Ph)

with h the characteristic mesh size, a and l the bilinear and linear forms given by

a(uh, vh) =
1

Pe

∫
Ω

D∇uh · ∇vh +
∫
Ω

R uh vh +
∫
Ω

vh C · ∇uh, l(vh) =
∫
Ω

f vh,

and V0h the finite element space defined by

V0h =
{
vh ∈ C0(Ω), ∀K ∈ Th, vh|K ∈ Pk, vh|∂Ω = 0

}
,

where Pk is the space of polynomials of degree at most k.

Linear system : Let (ϕ1, . . . , ϕNh) a basis of V
0
h . Th = {K1, . . . , KNe}

(Ne : number of elements)Find U ∈ RNh such that AU = b
with

A =
(
a(ϕi, ϕj)

)
1≤i,j≤Nh

and b =
(
l(ϕj)

)
1≤j≤Nh

.

1[Ern and Guermond, 2004]
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How improve PINN prediction with FEM ?
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Additive approach
Variational Problem : Let uθ ∈ Hk+1(Ω) ∩ H1

0(Ω).

Find p+h ∈ V0h such that, ∀vh ∈ V0h , a(p
+
h , vh) = l(vh)− a(uθ, vh), (P+

h )

with the enriched trial space V+h defined by

V+h =
{
u+h = uθ + p+h , p+h ∈ V0h

}
.

General Dirichlet BC : If u = g on ∂Ω, then

p+h = g− uθ on ∂Ω,

with uθ the PINN prior.

u
uθ

p+h

u
uθ
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Convergence analysis
Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote uh ∈ Vh the solution of (Ph) with Vh the standard trial space. Then,

|u− uh|H1 ⩽ CH1 hk|u|Hk+1 ,

‖u− uh‖L2 ⩽ CL2 hk+1|u|Hk+1 .

Theorem 2: Convergence analysis of the enriched FEM [Lecourtier et al., 2025]

We denote u+h ∈ V+h the solution of (P+
h ) with V+h the enriched trial space.

Then,
|u− u+h |H1 ⩽ |u−uθ|Hk+1

|u|Hk+1

(
CH1 hk|u|Hk+1

)
,

‖u− u+h ‖L2 ⩽ |u−uθ|Hk+1

|u|Hk+1

(
CL2 hk+1|u|Hk+1

)
.

Gains of the additive approach.
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Numerical results

2D Poisson problem on Square - Dirichlet BC
2D Anisotropic Elliptic problem on a Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC
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Numerical results

2D Poisson problem on Square - Dirichlet BC
2D Anisotropic Elliptic problem on a Square - Dirichlet BC
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Problem considered
Problem statement: Consider the Poisson problem with Dirichlet BC:{

−∆u = f, in Ω×M,

u = 0, on ∂Ω×M,

withΩ = [−0.5π, 0.5π]2 andM = [−0.5, 0.5]2 (p = 2 parameters).

Analytical solution :

u(x,µ) = exp
(
− (x− µ1)

2 + (y− µ2)
2

2

)
sin(2x) sin(2y).

PINN training: MLP of 5 layers; LBFGs optimizer (5000 epochs).
Imposing the Dirichlet BC exactly in the PINN with the levelset φ defined by

φ(x) = (x+ 0.5π)(x− 0.5π)(y+ 0.5π)(y− 0.5π).

Training time : less than 1 hour on a laptop GPU.
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Numerical results
Error estimates : 1 set of parameters.

µ(1) = (0.05, 0.22)

2.96e-11.43e-17.05e-23.50e-21.74e-2
10−12

10−6

100

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3
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Numerical results
Error estimates : 1 set of parameters.

µ(1) = (0.05, 0.22)

2.96e-11.43e-17.05e-23.50e-21.74e-2
10−12

10−6

100

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

Gains achieved : np = 50 sets of parameters.

S =
{
µ(1), . . . ,µ(np)

}
Gains in L2 rel error

of our method w.r.t. FEM

k min max mean

1 134.32 377.36 269.39

2 67.02 164.65 134.85

3 39.52 72.65 61.55

N = 20

Gain : ‖u− uh‖L2/‖u− u+h ‖L2

Cartesian mesh : N2 nodes.
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Numerical results
Error estimates : 1 set of parameters.

µ(1) = (0.05, 0.22)

2.96e-11.43e-17.05e-23.50e-21.74e-2
10−12

10−6

100

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

e

Ndofs required to reach the same error e :

Ndofs

k e FEM Add

1 1 · 10−3 14,161 64

1 · 10−4 143,641 576

2 1 · 10−4 6,889 225

1 · 10−5 31,329 1,089

3 1 · 10−5 6,724 784

1 · 10−6 20,164 2,704
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Numerical results

2D Poisson problem on Square - Dirichlet BC
2D Anisotropic Elliptic problem on a Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC
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Problem considered
Problem statement: Considering an Anisotropic Elliptic problem with Dirichlet BC:{

−div(D∇u) = f, in Ω,

u = 0, on ∂Ω,

withΩ = [0, 1]2 andM = [0.4, 0.6]× [0.4, 0.6]× [0.01, 1]× [0.1, 0.8] (p = 4).

Right-hand side :

f(x,µ) = exp
(
− (x− µ1)

2 + (y− µ2)
2

0.025σ2

)
.

Diffusion matrix : (symmetric and positive definite)

D(x,µ) =

(
ϵx2 + y2 (ϵ− 1)xy
(ϵ− 1)xy x2 + ϵy2

)
.

PINN training: MLP with Fourier Features1 of 5 layers; Adam optimizer (15000
epochs). Imposing the Dirichlet BC exactly in the PINN with a level-set function.

1[Tancik et al., 2020]
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Numerical results
Error estimates : 1 set of parameters.

µ(1) = (0.51, 0.54, 0.52, 0.55)

9.43e-24.56e-22.24e-21.11e-25.55e-3

10−10

10−5

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3
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Numerical results
Error estimates : 1 set of parameters.

µ(1) = (0.51, 0.54, 0.52, 0.55)

9.43e-24.56e-22.24e-21.11e-25.55e-3

10−10

10−5

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

Gains achieved : np = 50 sets of parameters.

S =
{
µ(1), . . . ,µ(np)

}
Gains in L2 rel error

of our method w.r.t. FEM

k min max mean

1 7.12 82.57 35.67

2 3.54 35.88 18.32

3 1.33 26.51 8.32

N = 20

Gain : ‖u− uh‖L2/‖u− u+h ‖L2

Cartesian mesh : N2 nodes.
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Numerical results
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Numerical results

2D Poisson problem on Square - Dirichlet BC
2D Anisotropic Elliptic problem on a Square - Dirichlet BC
2D Poisson problem on Annulus - Mixed BC
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Problem considered
Problem statement: Considering the Poisson problem with mixed BC:

−∆u = f, in Ω×M,

u = g, on ΓE ×M,
∂u
∂n

+ u = gR, on ΓI ×M,

withΩ = {(x, y) ∈ R2, 0.25 ≤ x2 + y2 ≤ 1} andM = [2.4, 2.6] (p = 1).

Analytical solution :

u(x;µ) = 1−
ln

(
µ1

√
x2 + y2

)
ln(4)

,

Boundary conditions :

g(x;µ) = 1− ln(µ1)

ln(4)
and gR(x;µ) = 2 +

4− ln(µ1)

ln(4)
.

PINN training: MLP of 5 layers; LBFGs optimizer (4000 epochs).
Imposing the mixed BC exactly in the PINN1.

1[Sukumar and Srivastava, 2022]



LECOURTIER Frédérique
Combine FEM and NN to solve Elliptic Problems on 2D geometries

13/15

13/15

Introduction How improve PINN prediction with FEM ? Numerical results Conclusion References

Numerical results
Error estimates : 1 set of parameters.

µ(1) = 2.51

1.67e-18.70e-24.35e-22.20e-21.10e-2

10−11

10−6

10−1

2
34

1

h

L2

FEM P1 FEM P2 FEM P3

Add P1 Add P2 Add P3

Gains achieved : np = 50 sets of parameters.

S =
{
µ(1), . . . ,µ(np)

}
Gains in L2 rel error

of our method w.r.t. FEM

k min max mean

1 15.12 137.72 55.5

2 31 77.46 58.41

3 18.72 21.49 20.6

h = 1.33 · 10−1

Gain : ‖u− uh‖L2/‖u− u+h ‖L2
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Numerical results
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Conclusion and Perspectives

• PINNs are good candidates for the enriched approach. Appendix 1
• Numerical validation of the theoretical results.
• The enriched approach provides the same results as the standard FEM method,
but with coarser meshes. ⇒ Reduction of the computational cost.

Perspectives :
• Consider non-linear problems.
• Use PINN prediction to build an optimal mesh, via a posteriori error estimates.
• Validate the additive approach on more complex geometry.
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Appendix 1 : Data-driven vs
Physics-Informed training
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Problem considered
Problem statement: Consider the Poisson problem in 1D with Dirichlet BC:{

−∂xxu = f, in Ω×M,

u = 0, on ∂Ω×M,

withΩ = [0, 1]2 andM = [0, 1]3 (p = 3 parameters).

Analytical solution : u(x;µ) = µ1 sin(2πx) + µ2 sin(4πx) + µ3 sin(6πx) .

Construction of two priors: MLP of 6 layers; Adam optimizer (10000 epochs).
Imposing the Dirichlet BC exactly in the PINN with φ(x) = x(x− 1).

• Physics-informed training: Ncol = 5000 collocation points.

Jr(θ) '
1

Ncol

Ncol∑
i=1

∣∣∂xxuθ(x
(i)
col;µ

(i)
col

)
+ f

(
x(i)col;µ

(i)
col

)∣∣2.
• Data-driven training: Ndata = 5000 data.

Jdata(θ) =
1

Ndata

Ndata∑
i=1

∣∣udataθ (x(i)data;µ
(i)
data)− u(x(i)data;µ

(i)
data)

∣∣2.
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Priors derivatives
µ(1) = (0.3, 0.2, 0.1)
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Additive approach in P1

1 set of parameters: µ(1) = (0.3, 0.2, 0.1)

FEM

N error

16 5.18 · 10−2

32 1.24 · 10−2

PINN prior uθ Data prior udataθ

N error gain error gain

16 1.29 · 10−3 40.34 3.51 · 10−3 14.78

32 3.49 · 10−4 35.41 8.8 · 10−4 14.06

50 set of parameters:

Gains in L2 rel error of our method w.r.t. FEM

PINN prior uθ Data prior udataθ

N min max mean min max mean

20 26.49 271.92 140.74 6.91 60.85 26.12
40 23.4 258.37 134.11 7.13 39.34 20.55

N : Nodes.
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Multiplicative approach
Liffted problem : Considering M such that uM = u+ M > 0 onΩ,{

L(uM) = f, inΩ,

uM = M, on ∂Ω.

Variational Problem : Let uθ,M = uθ + M ∈ M+ Hk+1(Ω) ∩ H1
0(Ω).

Find p×h ∈ 1 + V0h such that, ∀vh ∈ V0h , a
(
uθ,M p×h , uθ,Mvh

)
= l(uθ,Mvh), (P×

h )

with the enriched trial space V×h defined by{
u×h,M = uθ,M p×h , p×h ∈ 1 + V0h

}
.

General Dirichlet BC : If u = g on ∂Ω, then

p×h =
g+ M
uθ,M

on ∂Ω,

with uθ,M the PINN prior.
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Convergence analysis

Theorem 3: Convergence analysis of the enriched FEM [Lecourtier et al., 2025]

We denote u×h,M ∈ V×h the solution of (P×
h ) with V×h the enriched trial space.

Then, denoting u×h = u×h,M − M,

|u− u×h |H1 ⩽
∣∣∣ uM
uθ,M

∣∣∣
Hq+1

∥uθ,M∥W1,∞
|u|Hq+1

(
CH1 hk|u|Hk+1

)
,

‖u− u×h ‖L2 ⩽ Cθ,M
∣∣∣ uM
uθ,M

∣∣∣
Hq+1

∥uθ,M∥2
W1,∞

|u|Hq+1

(
CL2 hk+1|u|Hk+1

)
.

with
Cθ,M = ‖u−1

θ,M‖L∞ + 2|u−1
θ,M|W1,∞ + |u−1

θ,M|W2,∞ .
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Comparison of the two enriched methods

Theorem 4: [Lecourtier et al., 2025]

We have ∣∣∣ uM
uθ,M

∣∣∣
Hq+1

∥uθ,M∥W1,∞
|u|Hq+1

−→
M→∞

|u−uθ|Hk+1

|u|Hk+1
,

in H1 semi-norm and

Cθ,M
∣∣∣ uM
uθ,M

∣∣∣
Hq+1

∥uθ,M∥2
W1,∞

|u|Hq+1
−→
M→∞

|u−uθ|Hk+1

|u|Hk+1
,

in L2 norm.

Multiplicative and Additive approaches.
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Numerical results
Considering the 1D Poisson problem of Appendix 1 .
Error estimates : 1 set of parameters.

µ(1) = (0.3, 0.2, 0.1)

6.67e-23.23e-21.59e-27.87e-33.92e-3

10−6

10−4

10−2

2
3

1

h

L2

FEM P1 Mult P1 (M=3) Add P1

FEM P2 Mult P1 (M=100)
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