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Context : Create real-time digital twins of an organ (e.g. liver).

Current Objective : Develop hybrid ’ finite element M neural network ‘ methods.

accurate

quick + parameterized

OFFLINE :

Several Geometries

p

ONLINE :

1 Geometry - 1 Force

Several Forces

e, —

Get PINNs
prediction

Train a PINNs

Correct prediction

with ¢-FEM

bl —RE —

¢-FEM : New fictitious domain finite element method.
=> domain given by a level-set function [Duprez and Lozinski, 2020]
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Outline
Two lines of research :
1.

How to deal with complex geometry in PINNs ?

2. Once we have the prediction, how can we improve it (using FEM-type methods) ?

Poisson problem with Dirichlet conditions :
Findu : Q — RY(d = 1,2, 3) such that

—Au(x) =f(x) inQ,
{u(x) =g(x) onT P

with A the Laplace operator, §2 a smooth bounded open set and I its boundary.
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Standard PINNs

Implicit neural representation.

ug(x) = up(x) -0

with uyy a neural network (e.g. a MLP). Input o0 Output

Layer Hidden Layers Layer
DoFs Minimization Problem : [raissi et al., 2019]
Considering the least-square form of (), our discrete problem is

0 = argmin o, (0) + Blpc(0)

6cRm

with m the number of parameters of the NN and

Jn(6) = % /Q (Dup+0?  and  Ju(0) = % /a -

Monte-Carlo method : Discretize the cost function by random process.
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Limits
Claim on PINNs :
/\In practice : Not so easy ! We need to find

Solution : Approach by levelset. [Sukumar and Srivastava, 2022]

I={p=0}
>0

Advantages :
=> Sample is easy in this case.
=> Allow to impose in hard the BC:

ug(X) = d(X)wp (X) + &(X)

Natural LevelSet :
Signed Distance Function (SDF)

Problem : SDF is a C° function
= its derivatives explode

(=> Can be used for ¢-FEM) = we

ans MIM:=SIS
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Learn a regular levelset

If we have a boundary domain I, the SDF is solution to the Eikonal equation:

VoIl =1, xe O

p(X) =0, XeT

Vo(X)=n, xXeT

1t
\\\U e,

<
~ &
~ AR
= PRI
Tt

with O a box which contains €2 completely and n the exterior normal to I'.

How to do that ? with a PINNSs [Clémot and Digne, 2023] by adding a regularization term,

loss history

jreg:/ |A¢|2
@]

<0, parameters =

)

o 1000 2000 3000

Remark : PINNs non parametric - 1 geometry
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Poisson On Cat

=> Solving (P) with f = 1 (non parametric) and homogeneous Dirichlet BC (g = 0).

How to deal with complex geometry in PINNs ?

How improve PINNs prediction ?
0000000

= Looking for ug = ¢wy with ¢ the levelset learned.

Sampling
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Remark : Poisson on Bean
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PINNS

loss history

Conclusion

0000

— totalloss
—— residual

2000

0.042

o
0036

0030

0024

0018

0012

0.006

8000 10000

error : L2 = 2.04e-02

0.000

000108

0.00096

0.00084

000072

0.00060

0.00048

000036

000024

000012

0.00000

References

MIM=SIS



Introduction How to deal with complex geometry in PINNs ? How improve PINNs prediction ? Conclusion References
000 00000 ©000000 0000

How improve PINNs prediction ?

/A Considering simple geometry (i.e analytic levelset ¢).
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Idea

Get PINNSs prediction Correct prediction

1 Geometry+ 1 Force with FEM
o — gy — ]
(/) and f = ‘ | ’ V -

UNN W —|—g Uy —> T = Uy + €
(and g) uw =gonl

Correct by adding : Considering uyy as the prediction of our PINNs for (P), the
correction problem consists in writing the solution as

u:UNN+

- <1
and searching € : Q — R such that
{—Ag:f, in €, P
c=0, onl,

Wlth}:f—F AUNN-
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Poisson on Square

Solving (P) with homogeneous Dirichlet BC (g = 0).
= Domain (fixed) : 2 = [-0.57, 0.57)?
=> Analytical levelset function :
o(x,y) = (x— 0.5m)(x + 0.57)(y — 0.57) (y + 0.57)
=> Analytical solution :

Uex(x,y) = exp <— (= ua)” ; = M)Q) sin(2x) sin(2y)

with p1, po € [—0.5,0.5] (parametric).

Taking p1 = 0.05, gy = 0.22, the solution is given by

winvs B eror545e03 oo
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Theoretical results

Theorem 1: [Lecourtier et al., in progress]

We denote u the solution of () and uj, the discrete solution of the correction
problem (10) with V,, a P, Lagrange space. Thus

s —enllo < PRt (2 fuleen )

with a and -y respectively the coercivity and continuity constant.

—=— FEM P1 -m- Add Pl

Taking 1 = 0.05, o = 0.22. —+— FEM P2 -4~ Add P2

L? error on N —o— FEM P3 -e- Add P3

10 10—~ N
16 32 64 128 2356

Remark : We note N the number of nodes in each direction of the square.
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Gains using our approach

Considering a set of n, = 50 parameters : {(ugl), ugl)), ce (uﬁ""), uénp))}.

oy Gains on PINNs Gains on FEM

g min max mean std min max mean std

E 20 157 4835 33.64 5.57 13431 377.36 2694 43.67

3 40 61.47 195.75 13541 2321 131.18 362.09 262.12 41.67

é" Gains on PINNs Gains on FEM

S min max mean std min max mean std

§ 20 244.81 996.23 655.08 153.63 67.12 165.13 135.21 21.37

3 40 2,056.2 8,345.4 5,504.89 1,287.16 66.52 159.73 132.05 20.38

éﬁ Gains on PINNs Gains on FEM

H N min max mean std min max mean std
E 20 2,804.27  11,797.23 7,607.51 1,780.7  39.72 7299 61.85 7.05
I 40 50,989.23  212,714.99 137,711.77 32,125.57 40.02 73 61.98 6.92
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Time/Precision I

Taking ;1 = 0.05, pug = 0.22.

casel paraml : [0.05 0.22]

N=8 — FEM
— Additive

Time (s)

How improve PINNs prediction ? Conclusion
0O0000e0 0000
N time (s)
Precision FEM Add FEM Add
le—3 120 8 43
le—4 373 25 423.89 1.93

Question : Where is the PINNs training time ? towns ~ 240s

11/15
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Time/Precision 11
Taking a {(ugl), uOY (), Ménp))}.

The time of our approach (including the PINNSs training) to solve n, problems is

Totaad = trinns + Nplada

and the time of FEM is
Totrey = Npteem-
Let's suppose we want to achieve an
To solve n, problems, our method is faster than FEM (when considering network
training time) if

tpinn
Totyg < Toteey = np > ——— <561 = |n,

trem — tadd

Remark: Considering that the times are of the same order for each parameter considered.
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Conclusion

Current progress :

=> Levelset learning works on complex geometries
Advantage : enables “exact” imposition of BC in PINNs

=> Additive approach works on simple geometries
Advantage (compared with standard FEM) :

- More accurate solution (smaller error)
- Better execution time

Perspectives :
=> Working on parametric models for Levelset learning
=> Combine the 2 axis to improve NN predictions on complex geometries

= Use ¢-FEM (fictitious domain method) to improve NN predictions
Advantage : The levelset learned by PINNs can be used in ¢-FEM

=> Start considering 3D cases

1315 MIM=SIS
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Supplementary work I

» 16h of Computer Science Practical Work (Python) - L2S3

» 34h of Computer Science Practical Work (C++) - L3S6

J
Formations (Total : = 65h)

» "Charte de déontologie des métiers de la Recherche” (OBLIGATORY)

» MOOC Bordeaux - "Intégrité scientifique dans les métiers de la recherche”
(OBLIGATORY)

"Enseigner et apprendre (public : mission enseignement)”
"Gérer ses ressources bibliographiques avec Zotero”

3 Workshops on EDP at IRMA

vV v VYyy

19 Remote Sessions (/2 40h) - "Formation Introduction au Deep Leraning” (FIDLE)

-
&
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Supplementary work I1

Talks

» Team meeting (Mimesis) - December 12, 2023 - "Development of hybrid finite
element/neural network methods to help create digital surgical twins”

» Retreat (Macaron/Tonus) - February 6, 2024
"Mesh-based methods and physically informed learning”

» Exama project, WP2 reunion - March 26, 2024
"How to work with complex geometries in PINNs ?”

|

Publications

» Lecourtier, Victorion, Barucq, Duprez, Faucher, Franck, Lleras, and Michel-Dansac.
Enhanced finite element methods using neural networks. in progress.

Vs
-

Coming soon...

» July 8-12, 2024 - Poster for a Workshop on Scientific Machine Learning (SciML 2024)

Ve

)

15015 MIM=SIS



https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2023_12_12.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2023_12_12.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2024_02_06.pdf
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Thank you !
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Appendix 1 : General Idea

Variational Problem: Findu € V| a(u,v) =I(v), Y €V
with V - Hilbert space, a - bilinear form, / - linear form.

Approach Problem:  Find u, € Vi, | a(up,vy) = I(vy), Yvy € Vy
with  u, € Vj, an approximate solution of u,

Vy CV, dimV, = Ny < o0, (Vh > 0)

= Construct a piecewise continuous functions space

vy = Plé,h = {Vh c CO(Q),VK S 7777Vh\K S Pk}

Tn={K1,. . Kne }
(Ne : number of elements)

where P is the vector space of polynomials of total degree < k.

Finding an approximation of the PDE solution = solving the following linear system:
AU=b
with
A= (algi ) i<ijem, U= (u)i<icn, and b= (I())1<j<n,
where (1, ..., @y, ) is a basis of V.

1710 MIM:=SIS
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Appendix 2 : Problem

Let u = ¢w + g such that
—Au=f, inQ,
u=g,onl,
where ¢ is the level-set function and €2 and I are given by :

I'={¢=0} >0

The level-set function ¢ is supposed to be known on R? and sufficiently smooth.
For instance, the signed distance to I is a good candidate.

Remark : Thanks to ¢ and g, the boundary conditions are respected.

2/10 MIM=SIS
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Appendix 2 : Fictitious domain

o0,

Q
N =00 r,
Q H : T
Ty
‘ Th

¢p : approximation of ¢

Qp, . computational mesh
0%y, : boundary of Q, (02, # T'y)

Remark : nyert Will denote the number of vertices in each direction

-
= T’y = {¢» = 0} : approximate boundary of T
-
-

3110 MIM=SIS
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Appendix 2 : Facets and Cells sets

Ty

0 :
"

= T,I': mesh elements cut by T’

= F}: collects the interior facets of 7,"
(either cut by ', or belonging to a cut mesh element)

arto MIM=SIS
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Appendix 2 : Poisson problem

Approach Problem : Find w;, € V,Sk) such that

Gh(Wh,Vh) = /h(Vh) Vv, € V,(,k)
where
0
antn) = [ V00w V(ow) — [ oma +[Gw)]
h(v) = [ fov+|GH(v Stabilization terms
0= | o
and

Vi = {vy € H (D) vy, € PU(T), VT E T5} .

For the non homogeneous case, we replace
u=o¢w — uU=¢w+g

by supposing that g is currently given over the entire €2;.

5/10 MIM:=SIS
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Appendix 2 : Stabilization terms

Independent parameter of h Jump on the interface E
4
WV—O’hZ/|: ]{ (¢hV:|+Uh2Z/A¢hW (dnv)
EEF) TeT”
1storder term 2ndorder term
G5 (v) =|—oh? Z /fA onv)
reTr Z/ (o) + f) A(Pnv)

€T,k

1st term : ensure continuity of the solution by penalizing gradient jumps.

— Ghost penalty [Burman, 2010]

2nd term : require the solution to verify the strong form on Q,I:

Purpose:

=> reduce the errors created by the "fictitious” boundary

=> ensure the correct condition number of the finite element matrix
=> restore the coercivity of the bilinear scheme

6/10 MIM=SIS
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Appendix 1 : Standard FEM
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Appendix 3 : Learn a levelset

If we have a boundary domain I, the SDF is solution to the Eikonal equation:

Ve[| =1, xe O
6(X) =0, XeT

Vo(X)=n, XeT
with O a box which contains €2 completely and n the exterior normal to I'.

How make that ? with a PINNs [Clémot and Digne, 2023]by adding a term to regularize.
2
jreg = / |A¢|
O

dirichlet : max = 1.23e-05 ; mean = 7.426-06 105

loss history <0, parameters = o
12
025 o — © wby)
10? 11
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100 000 10
102 00010 025 / 7 09
- I I
1 ooos 050 [ / 08
107¢ 075 / 07
-0.0020 \ .
107 -1.00 N~ 06
1010 00025 o5 05
04
150
~050 -025 000 025 050 075 100 125 150

o 1000 2000 3000 000 5000 o7 00 02 o0i o8 o8 10
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Appendix 3 : Poisson 2D

=> Solving the Poisson problem with f = 1 and homogeneous Dirichlet BC.

= Looking for ug = ¢wy with ¢ the levelset learned.

Sampling

00405

0.0000
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— totalloss.
—— residual
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Appendix 4 : Add on Cat

0.048
0042 Ilu_ex-u_FEM|_L: 00005 |lu_ex-u_PINNs||_L2 : 2.04e-02 f—
| | 0.0004
0.036 0.00080
0.0003
0.00064
0030 0.0002
0024 010001 0.00048
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0012 00001 000016
—0.0002
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-0.0003
0.000 —0.00016
-0.0004
5.00098 lu_ex-u_Corr||_L2 : 1.96e-03 0.0005
FEM/PINNs = 0.13 000084 0.0004
000072 0.0003
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0.0001
000036
= - 0.0000
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Appendix 5 : Multiplicative approach

Correct by multiplying : Considering uyy as the prediction of our PINNs for (P), we
define

UM:uNN+M

with M a constant chosen so that uy, > 0, called the enhancement constant.
Thus, the correction problem consists in writing the solution as

a:UMX

~1

and searching C :  — R such that

1010 MIM=SIS
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