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Scientific context
Context : Create real-time digital twins of an organ (e.g. liver).

Current Objective : Develop hybrid finite element / neural network methods.
accurate quick + parameterized

OFFLINE :
Several Geometries

+

Several Forces Train a PINNs

ONLINE :
1 Geometry - 1 Force

Get PINNs
prediction

Correct prediction
with ϕ-FEM

ϕ-FEM : New fictitious domain finite element method. Appendix 2
⇒ domain given by a level-set function [Duprez and Lozinski, 2020]
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Outline
Two lines of research :

1. How to deal with complex geometry in PINNs ?

2. Once we have the prediction, how can we improve it (using FEM-type methods) ?

Poisson problem with Dirichlet conditions :
Find u : Ω → Rd(d = 1, 2, 3) such that{

−∆u(x) = f(x) inΩ,

u(x) = g(x) on Γ
(P )

with∆ the Laplace operator,Ω a smooth bounded open set and Γ its boundary.
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How to deal with complex geometry
in PINNs ?
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Standard PINNs
Implicit neural representation.

uθ(x) = uNN(x)

with uNN a neural network (e.g. a MLP).

DoFs Minimization Problem : [Raissi et al., 2019]
Considering the least-square form of (P ), our discrete problem is

θ̄ = argmin
θ∈Rm

αJin(θ) + βJbc(θ)

with m the number of parameters of the NN and

Jin(θ) =
1

2

∫
Ω

(∆uθ + f)2 and Jbc(θ) =
1

2

∫
∂Ω

(uθ − g)2

Monte-Carlo method : Discretize the cost function by random process.
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Limits
Claim on PINNs : No mesh, so easy to go on complex geometry !
"In practice : Not so easy ! We need to find how to sample in the geometry.

Solution : Approach by levelset. [Sukumar and Srivastava, 2022]

Advantages :
Ù Sample is easy in this case.
Ù Allow to impose in hard the BC :

uθ(X) = ϕ(X)wθ(X) + g(X)

(Ù Can be used for ϕ-FEM)

Natural LevelSet :
Signed Distance Function (SDF)

Problem : SDF is a C0 function
⇒ its derivatives explode
⇒ we need a regular levelset
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Learn a regular levelset

If we have a boundary domain Γ, the SDF is solution to the Eikonal equation:
||∇ϕ(X)|| = 1, X ∈ O
ϕ(X) = 0, X ∈ Γ

∇ϕ(X) = n, X ∈ Γ
withO a box which containsΩ completely and n the exterior normal to Γ.

How to do that ? with a PINNs [Clémot and Digne, 2023] by adding a regularization term,

Jreg =
∫
O
|∆ϕ|2

Remark : PINNs non parametric - 1 geometry
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Poisson On Cat
Ù Solving (P ) with f = 1 (non parametric) and homogeneous Dirichlet BC (g = 0).
Ù Looking for uθ = ϕwθ with ϕ the levelset learned.

Sampling

Remark : Poisson on Bean Appendix 3
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How improve PINNs prediction ?
"Considering simple geometry (i.e analytic levelset ϕ).
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Idea

1 Geometry + 1 Force

ϕ and f

(and  g)

Get PINNs prediction

uNN = ϕwNN + g

uNN = g on Γ

Correct prediction
with FEM

uNN → ũ = uNN + C̃

Correct by adding : Considering uNN as the prediction of our PINNs for (P ), the
correction problem consists in writing the solution as

ũ = uNN + C̃
≪1

and searching C̃ : Ω → Rd such that{
−∆C̃ = f̃, inΩ,

C̃ = 0, on Γ,
(P+)

with f̃ = f+∆uNN. Appendix 1 Appendix 5
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Poisson on Square
Solving (P ) with homogeneous Dirichlet BC (g = 0).
Ù Domain (fixed) : Ω = [−0.5π, 0.5π]2
Ù Analytical levelset function :

ϕ(x, y) = (x − 0.5π)(x + 0.5π)(y − 0.5π)(y + 0.5π)

Ù Analytical solution :

uex(x, y) = exp
(
−
(x − µ1)

2 + (y − µ2)
2

2

)
sin(2x) sin(2y)

with µ1, µ2 ∈ [−0.5, 0.5] (parametric).

Taking µ1 = 0.05, µ2 = 0.22, the solution is given by
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Theoretical results
Theorem 1: [Lecourtier et al., in progress]

We denote u the solution of (P ) and uh the discrete solution of the correction
problem (10) with Vh a Pk Lagrange space. Thus

||u− uh||0 ≤ |u−uθ|Hk+1

|u|Hk+1

( γ

α
Chk+1|u|Hk+1

)
with α and γ respectively the coercivity and continuity constant.

Taking µ1 = 0.05, µ2 = 0.22.

Remark : We note N the number of nodes in each direction of the square.
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Gains using our approach
Considering a set of np = 50 parameters :

{
(µ

(1)
1 , µ

(1)
2 ), . . . , (µ

(np)
1 , µ

(np)
2 )

}
.

So
lu
ti
on

P 1
So

lu
ti
on

P 2
So

lu
ti
on

P 3
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Time/Precision I
Taking µ1 = 0.05, µ2 = 0.22.

Question : Where is the PINNs training time ? tPINNs ≈ 240s



12/15

12/15

Introduction How to deal with complex geometry in PINNs ? How improve PINNs prediction ? Conclusion References

Time/Precision II
Taking a set of np parameters

{
(µ

(1)
1 , µ

(1)
2 ), . . . , (µ

(np)
1 , µ

(np)
2 )

}
.

The time of our approach (including the PINNs training) to solve np problems is

TotAdd = tPINNs + nptAdd

and the time of FEM is
TotFEM = nptFEM.

Let’s suppose we want to achieve an error of 1e− 3.
To solve np problems, our method is faster than FEM (when considering network
training time) if

TotAdd < TotFEM ⇒ np >
tPINNs

tFEM − tAdd
≈ 5.61 ⇒ np = 6

Remark: Considering that the times are of the same order for each parameter considered.
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Conclusion
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Conclusion
Current progress :

Ù Levelset learning works on complex geometries
Advantage : enables “exact” imposition of BC in PINNs

Ù Additive approach works on simple geometries
Advantage (compared with standard FEM) :
- More accurate solution (smaller error)
- Better execution time

Perspectives :

Ù Working on parametric models for Levelset learning

Ù Combine the 2 axis to improve NN predictions on complex geometries Appendix 4

Ù Use ϕ-FEM (fictitious domain method) to improve NN predictions
Advantage : The levelset learned by PINNs can be used in ϕ-FEM

Ù Start considering 3D cases
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Supplementary work I

Teaching at the university

▶ 16h of Computer Science Practical Work (Python) - L2S3

▶ 34h of Computer Science Practical Work (C++) - L3S6

Formations (Total : ≈ 65h)

▶ ”Charte de déontologie des métiers de la Recherche” (OBLIGATORY)

▶ MOOC Bordeaux - ”Intégrité scientifique dans les métiers de la recherche”
(OBLIGATORY)

▶ ”Enseigner et apprendre (public : mission enseignement)”

▶ ”Gérer ses ressources bibliographiques avec Zotero”

▶ 3 Workshops on EDP at IRMA

▶ 19 Remote Sessions (≈ 40h) - ”Formation Introduction au Deep Leraning” (FIDLE)
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Supplementary work II
Talks

▶ Team meeting (Mimesis) - December 12, 2023 - ”Development of hybrid finite
element/neural network methods to help create digital surgical twins”

▶ Retreat (Macaron/Tonus) - February 6, 2024
”Mesh-based methods and physically informed learning”

▶ Exama project, WP2 reunion - March 26, 2024
”How to work with complex geometries in PINNs ?”

Publications

▶ Lecourtier, Victorion, Barucq, Duprez, Faucher, Franck, Lleras, and Michel-Dansac.
Enhanced finite element methods using neural networks. in progress.

Coming soon...

▶ July 8 - 12, 2024 - Poster for a Workshop on Scientific Machine Learning (SciML 2024)

https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2023_12_12.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2023_12_12.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2024_02_06.pdf
https://flecourtier.github.io/these2023/these2023/1.0.3/_attachments/presentation/2024_03_26.pdf
https://irma.math.unistra.fr/~micheldansac/SciML2024/participants.html
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Thank you !
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Appendix 1 : Standard FEM
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Appendix 1 : General Idea
Variational Problem : Find u ∈ V | a(u, v) = l(v), ∀v ∈ V
with V - Hilbert space, a - bilinear form, l - linear form.

Approach Problem : Find uh ∈ Vh | a(uh, vh) = l(vh), ∀vh ∈ Vh
with • uh ∈ Vh an approximate solution of u,
•Vh ⊂ V, dimVh = Nh < ∞, (∀h > 0)
⇒ Construct a piecewise continuous functions space

Vh := Pk
C,h = {vh ∈ C0(Ω̄), ∀K ∈ Th, vh|K ∈ Pk}

where Pk is the vector space of polynomials of total degree≤ k.
Th = {K1, . . . , KNe}

(Ne : number of elements)

Finding an approximation of the PDE solution⇒ solving the following linear system:

AU = b

with
A = (a(φi, φj))1≤i,j≤Nh , U = (ui)1≤i≤Nh and b = (l(φj))1≤j≤Nh

where (φ1, . . . , φNh) is a basis of Vh.
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Appendix 2 :ϕ-FEM
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Appendix 2 : Problem
Let u = ϕw+ g such that {

−∆u = f, inΩ,

u = g, on Γ,

where ϕ is the level-set function andΩ and Γ are given by :

The level-set function ϕ is supposed to be known onRd and sufficiently smooth.
For instance, the signed distance to Γ is a good candidate.

Remark : Thanks to ϕ and g, the boundary conditions are respected.



3/10

3/10

Appendix Appendix 1 : Standard FEM Appendix 2 :ϕ-FEM Other results

Appendix 2 : Fictitious domain

Ù ϕh : approximation of ϕ
Ù Γh = {ϕh = 0} : approximate boundary of Γ
Ù Ωh : computational mesh
Ù ∂Ωh : boundary ofΩh (∂Ωh ̸= Γh)

Remark : nvert will denote the number of vertices in each direction
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Appendix 2 : Facets and Cells sets

Ù T Γ
h : mesh elements cut by Γh

Ù FΓ
h : collects the interior facets of T Γ

h
(either cut by Γh or belonging to a cut mesh element)
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Appendix 2 : Poisson problem
Approach Problem : Find wh ∈ V(k)h such that

ah(wh, vh) = lh(vh) ∀vh ∈ V(k)h

where

ah(w, v) =
∫
Ωh

∇(ϕhw) · ∇(ϕhv)−
∫
∂Ωh

∂

∂n
(ϕhw)ϕhv+ Gh(w, v) ,

lh(v) =
∫
Ωh

fϕhv+ Grhs
h (v) Stabilization terms

and
V(k)h =

{
vh ∈ H1(Ωh) : vh|T ∈ Pk(T), ∀T ∈ Th

}
.

For the non homogeneous case, we replace

u = ϕw → u = ϕw+ g

by supposing that g is currently given over the entireΩh.
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Appendix 2 : Stabilization terms

1st term : ensure continuity of the solution by penalizing gradient jumps.
→ Ghost penalty [Burman, 2010]
2nd term : require the solution to verify the strong form onΩΓ

h .
Purpose :
Ù reduce the errors created by the ”fictitious” boundary
Ù ensure the correct condition number of the finite element matrix
Ù restore the coercivity of the bilinear scheme
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Other results
Poisson on Bean
Additive approach on Cat
Multiplicative approach
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Appendix 3 : Learn a levelset

If we have a boundary domain Γ, the SDF is solution to the Eikonal equation:
||∇ϕ(X)|| = 1, X ∈ O
ϕ(X) = 0, X ∈ Γ

∇ϕ(X) = n, X ∈ Γ
withO a box which containsΩ completely and n the exterior normal to Γ.

Howmake that ? with a PINNs [Clémot and Digne, 2023]by adding a term to regularize.

Jreg =
∫
O
|∆ϕ|2
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Appendix 3 : Poisson 2D
Ù Solving the Poisson problem with f = 1 and homogeneous Dirichlet BC.
Ù Looking for uθ = ϕwθ with ϕ the levelset learned.

Sampling
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Other results
Poisson on Bean
Additive approach on Cat
Multiplicative approach
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Appendix 4 : Add on Cat
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Other results
Poisson on Bean
Additive approach on Cat
Multiplicative approach
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Appendix 5 : Multiplicative approach
Correct by multiplying : Considering uNN as the prediction of our PINNs for (P ), we
define

uM = uNN + M

with M a constant chosen so that uM > 0, called the enhancement constant.
Thus, the correction problem consists in writing the solution as

ũ = uM × C̃
≈1

and searching C̃ : Ω → Rd such that{
−∆(uMC̃) = f, inΩ,

C̃ = 1, on Γ.


	Introduction
	How to deal with complex geometry in PINNs ?
	How improve PINNs prediction ?
	Conclusion
	References
	Appendix
	Appendix
	Appendix 1 : Standard FEM
	Appendix 2 :-FEM
	Other results
	Poisson on Bean
	Additive approach on Cat
	Multiplicative approach



