

1st CSI

Development of hybrid finite element/neural network methods to help create digital surgical twins

Authors:

Frédérique LECOURTIER

Supervisors:

Emmanuel FRANCK

Michel DUPREZ

Vanessa LLERAS

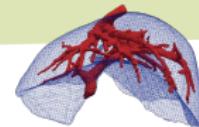
June 14, 2024

MIMESIS

Introduction

Scientific context

Context : Create real-time digital twins of an organ (e.g. liver).



Current Objective : Develop hybrid **finite element** / **neural network** methods.

accurate

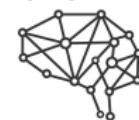
quick + parameterized

OFFLINE :

Several Geometries

Several Forces

Train a PINNs

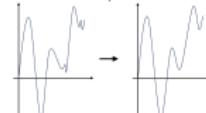


ONLINE :

1 Geometry - 1 Force

Get PINNs prediction

Correct prediction with ϕ -FEM



ϕ -FEM : New fictitious domain finite element method.

Appendix 2

⇒ domain given by a level-set function [Duprez and Lozinski, 2020]

Outline

Two lines of research :

1. How to deal with complex geometry in PINNs ?
2. Once we have the prediction, how can we improve it (using FEM-type methods) ?

Poisson problem with Dirichlet conditions :

Find $u : \Omega \rightarrow \mathbb{R}^d$ ($d = 1, 2, 3$) such that

$$\begin{cases} -\Delta u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \Gamma \end{cases} \quad (\mathcal{P})$$

with Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

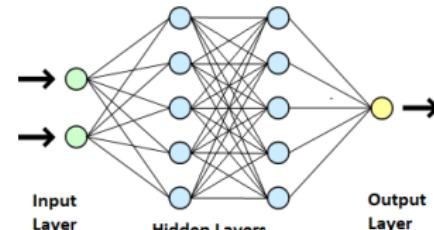
How to deal with complex geometry in PINNs ?

Standard PINNs

Implicit neural representation.

$$u_{\theta}(x) = u_{NN}(x)$$

with u_{NN} a neural network (e.g. a MLP).



DoFs Minimization Problem : [Raissi et al., 2019]

Considering the least-square form of (P) , our discrete problem is

$$\bar{\theta} = \underset{\theta \in \mathbb{R}^m}{\operatorname{argmin}} \alpha J_{in}(\theta) + \beta J_{bc}(\theta)$$

with m the number of parameters of the NN and

$$J_{in}(\theta) = \frac{1}{2} \int_{\Omega} (\Delta u_{\theta} + f)^2 \quad \text{and} \quad J_{bc}(\theta) = \frac{1}{2} \int_{\partial\Omega} (u_{\theta} - g)^2$$

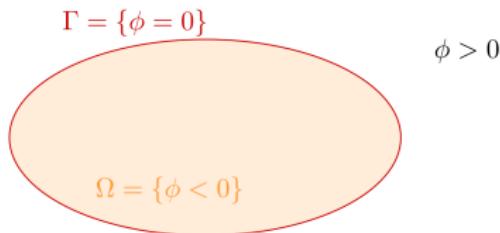
Monte-Carlo method : Discretize the cost function by random process.

Limits

Claim on PINNs : No mesh, so easy to go on complex geometry !

⚠ In practice : Not so easy ! We need to find how to sample in the geometry.

Solution : Approach by levelset. [Sukumar and Srivastava, 2022]



Advantages :

- Sample is easy in this case.
- Allow to impose in hard the BC :

$$u_\theta(X) = \phi(X)w_\theta(X) + g(X)$$

(→ Can be used for ϕ -FEM)

Natural LevelSet :

Signed Distance Function (SDF)

Problem : SDF is a \mathcal{C}^0 function

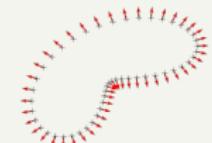
⇒ its derivatives explode

⇒ we need a regular levelset

Learn a regular levelset

If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

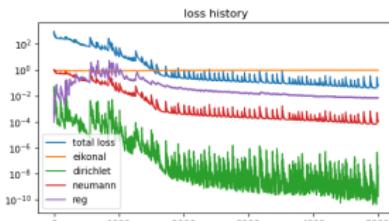
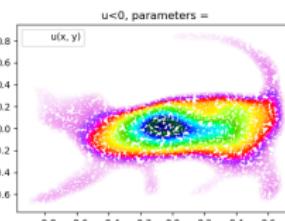
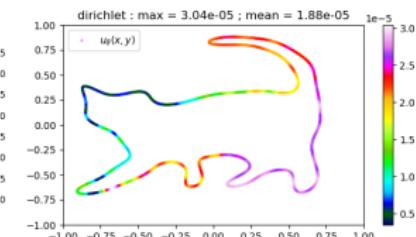
$$\begin{cases} \|\nabla \phi(x)\| = 1, x \in \mathcal{O} \\ \phi(x) = 0, x \in \Gamma \\ \nabla \phi(x) = n, x \in \Gamma \end{cases}$$



with \mathcal{O} a box which contains Ω completely and n the exterior normal to Γ .

How to do that ? with a PINNs [Clémot and Digne, 2023] by **adding a regularization term**,

$$J_{reg} = \int_{\mathcal{O}} |\Delta \phi|^2$$

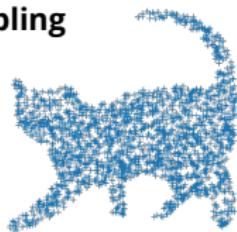
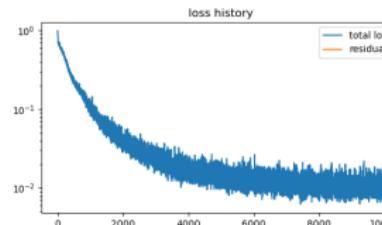
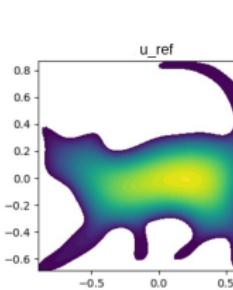
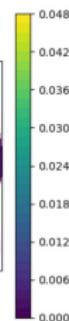
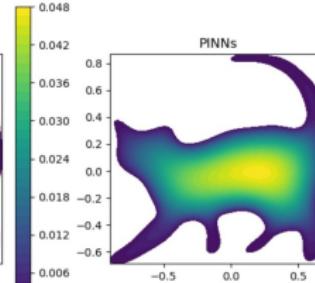
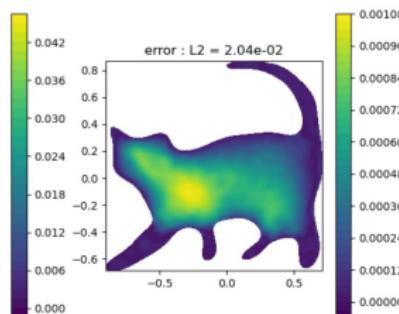


Remark : PINNs non parametric - 1 geometry

Poisson On Cat

- Solving (\mathcal{P}) with $f = 1$ (non parametric) and homogeneous Dirichlet BC ($g = 0$).
- Looking for $u_\theta = \phi w_\theta$ with ϕ the levelset learned.

Sampling



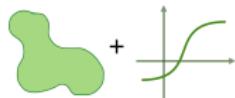
Remark : Poisson on Bean [Appendix 3](#)

How improve PINNs prediction ?

⚠ Considering simple geometry (i.e analytic levelset ϕ).

Idea

1 Geometry + 1 Force



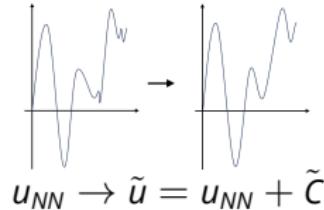
ϕ and f
(and g)

Get PINNs prediction

$$u_{NN} = \phi w_{NN} + g$$

$$u_{NN} = g \text{ on } \Gamma$$

Correct prediction
with FEM



Correct by adding: Considering u_{NN} as the prediction of our PINNs for (P) , the correction problem consists in writing the solution as

$$\tilde{u} = u_{NN} + \tilde{c}$$

$\ll 1$

and searching $\tilde{c} : \Omega \rightarrow \mathbb{R}^d$ such that

$$\begin{cases} -\Delta \tilde{c} = \tilde{f}, & \text{in } \Omega, \\ \tilde{c} = 0, & \text{on } \Gamma, \end{cases} \quad (P^+)$$

with $\tilde{f} = f + \Delta u_{NN}$. [Appendix 1](#) [Appendix 5](#)

Poisson on Square

Solving (\mathcal{P}) with homogeneous Dirichlet BC ($g = 0$).

→ **Domain (fixed)** : $\Omega = [-0.5\pi, 0.5\pi]^2$

→ **Analytical levelset function :**

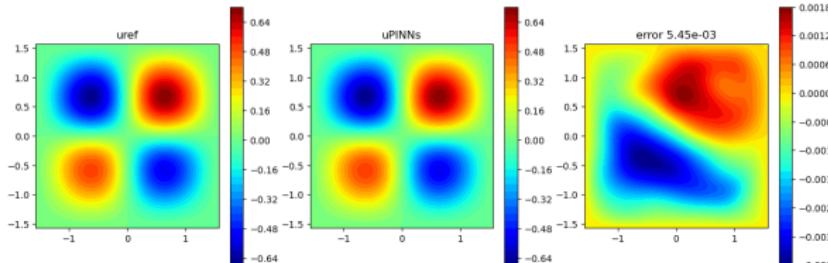
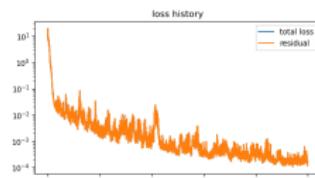
$$\phi(x, y) = (x - 0.5\pi)(x + 0.5\pi)(y - 0.5\pi)(y + 0.5\pi)$$

→ **Analytical solution :**

$$u_{ex}(x, y) = \exp\left(-\frac{(x - \mu_1)^2 + (y - \mu_2)^2}{2}\right) \sin(2x) \sin(2y)$$

with $\mu_1, \mu_2 \in [-0.5, 0.5]$ (parametric).

Taking $\mu_1 = 0.05, \mu_2 = 0.22$, the solution is given by



Theoretical results

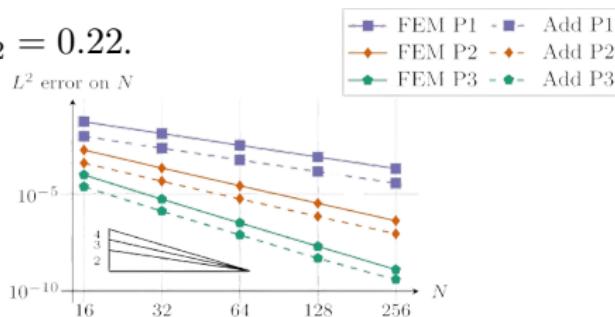
Theorem 1: [Lecourtier et al., in progress]

We denote u the solution of (P) and u_h the discrete solution of the correction problem (10) with V_h a \mathbb{P}_k Lagrange space. Thus

$$\|u - u_h\|_0 \leq \frac{\|u - u_\theta\|_{H^{k+1}}}{\|u\|_{H^{k+1}}} \left(\frac{\gamma}{\alpha} Ch^{k+1} \|u\|_{H^{k+1}} \right)$$

with α and γ respectively the coercivity and continuity constant.

Taking $\mu_1 = 0.05$, $\mu_2 = 0.22$.



Remark : We note N the number of nodes in each direction of the square.

Gains using our approach

Considering a set of $n_p = 50$ parameters : $\left\{ (\mu_1^{(1)}, \mu_2^{(1)}), \dots, (\mu_1^{(n_p)}, \mu_2^{(n_p)}) \right\}$.

Solution \mathbb{P}_1

N	Gains on PINNs				Gains on FEM			
	min	max	mean	std	min	max	mean	std
20	15.7	48.35	33.64	5.57	134.31	377.36	269.4	43.67
40	61.47	195.75	135.41	23.21	131.18	362.09	262.12	41.67

Solution \mathbb{P}_2

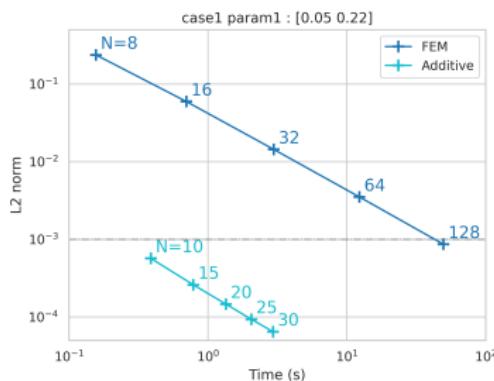
N	Gains on PINNs				Gains on FEM			
	min	max	mean	std	min	max	mean	std
20	244.81	996.23	655.08	153.63	67.12	165.13	135.21	21.37
40	2,056.2	8,345.4	5,504.89	1,287.16	66.52	159.73	132.05	20.38

Solution \mathbb{P}_3

N	Gains on PINNs				Gains on FEM			
	min	max	mean	std	min	max	mean	std
20	2,804.27	11,797.23	7,607.51	1,780.7	39.72	72.99	61.85	7.05
40	50,989.23	212,714.99	137,711.77	32,125.57	40.02	73	61.98	6.92

Time/Precision I

Taking $\mu_1 = 0.05, \mu_2 = 0.22$.



Precision	N		time (s)	
	FEM	Add	FEM	Add
1e - 3	120	8	43	0.24
1e - 4	373	25	423.89	1.93

 t_{FEM} t_{Add}

Question : Where is the PINNs training time ? $t_{PINNs} \approx 240s$

Time/Precision II

Taking a **set of n_p parameters** $\left\{(\mu_1^{(1)}, \mu_2^{(1)}), \dots, (\mu_1^{(n_p)}, \mu_2^{(n_p)})\right\}$.

The time of our approach (including the PINNs training) to solve n_p problems is

$$Tot_{Add} = t_{PINNs} + n_p t_{Add}$$

and the time of FEM is

$$Tot_{FEM} = n_p t_{FEM}.$$

Let's suppose we want to achieve an **error of $1e - 3$** .

To solve n_p problems, our method is faster than FEM (when considering network training time) if

$$Tot_{Add} < Tot_{FEM} \Rightarrow n_p > \frac{t_{PINNs}}{t_{FEM} - t_{Add}} \approx 5.61 \Rightarrow n_p = 6$$

Remark: Considering that the times are of the same order for each parameter considered.

Conclusion

Conclusion

Current progress :

- Levelset learning works on complex geometries
Advantage : enables “exact” imposition of BC in PINNs
- Additive approach works on simple geometries
Advantage (compared with standard FEM) :
 - More accurate solution (smaller error)
 - Better execution time

Perspectives :

- Working on parametric models for Levelset learning
- Combine the 2 axis to improve NN predictions on complex geometries Appendix 4
- Use ϕ -FEM (fictitious domain method) to improve NN predictions
Advantage : The levelset learned by PINNs can be used in ϕ -FEM
- Start considering 3D cases

Supplementary work I

Teaching at the university

- ▶ 16h of Computer Science Practical Work (Python) - L2S3
- ▶ 34h of Computer Science Practical Work (C++) - L3S6

Formations (Total : $\approx 65h$)

- ▶ "Charte de déontologie des métiers de la Recherche" (OBLIGATORY)
- ▶ MOOC Bordeaux - "Intégrité scientifique dans les métiers de la recherche" (OBLIGATORY)
- ▶ "Enseigner et apprendre (public : mission enseignement)"
- ▶ "Gérer ses ressources bibliographiques avec Zotero"
- ▶ 3 Workshops on EDP at IRMA
- ▶ 19 Remote Sessions ($\approx 40h$) - "Formation Introduction au Deep Leraning" (FIDLE)

Supplementary work II

Talks

- ▶ Team meeting (Mimesis) - December 12, 2023 - "Development of hybrid finite element/neural network methods to help create digital surgical twins"
- ▶ Retreat (Macaron/Tonus) - February 6, 2024
"Mesh-based methods and physically informed learning"
- ▶ Exama project, WP2 reunion - March 26, 2024
"How to work with complex geometries in PINNs ?"

Publications

- ▶ **Lecourtier**, Victorion, Barucq, Duprez, Faucher, Franck, Lleras, and Michel-Dansac. Enhanced finite element methods using neural networks. in progress.

Coming soon...

- ▶ July 8 - 12, 2024 - Poster for a Workshop on Scientific Machine Learning ([SciML 2024](#))

Thank you !

Bibliography

Clémot and Digne. Neural skeleton: Implicit neural representation away from the surface. *Computers and Graphics*, 2023.

Cotin, Duprez, Lleras, Lozinski, and Vuillemot. ϕ -fem: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer. 2021.

Duprez and Lozinski. ϕ -fem: A Finite Element Method on Domains Defined by Level-Sets. *SIAM Journal on Numerical Analysis*, 2020.

Duprez, Lleras, and Lozinski. A new ϕ -fem approach for problems with natural boundary conditions, 2020.

Duprez, Lleras, and Lozinski. ϕ -fem: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations. *ESAIM: Mathematical Modelling and Numerical Analysis*, 2023.

Raissi, Perdikaris, and Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 2019.

Sukumar and Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. *Computer Methods in Applied Mechanics and Engineering*, 2022.

Lecourtier, Victorion, Barucq, Duprez, Faucher, Franck, Lleras, and Michel-Dansac. Enhanced finite element methods using neural networks. in progress.

Appendix

Appendix 1 : Standard FEM

Appendix 1 : General Idea

Variational Problem : Find $u \in V \mid a(u, v) = I(v), \forall v \in V$
 with V - Hilbert space, a - bilinear form, I - linear form.

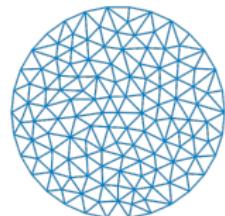
Approach Problem : Find $u_h \in V_h \mid a(u_h, v_h) = I(v_h), \forall v_h \in V_h$
 with

- $u_h \in V_h$ an approximate solution of u ,
- $V_h \subset V$, $\dim V_h = N_h < \infty$, ($\forall h > 0$)

 ⇒ Construct a piecewise continuous functions space

$$V_h := P_{C,h}^k = \{v_h \in C^0(\bar{\Omega}), \forall K \in \mathcal{T}_h, v_h|_K \in \mathbb{P}_k\}$$

where \mathbb{P}_k is the vector space of polynomials of total degree $\leq k$.



$$\mathcal{T}_h = \{K_1, \dots, K_{N_e}\}$$

(N_e : number of elements)

Finding an approximation of the PDE solution ⇒ solving the following linear system:

$$AU = b$$

with

$$A = (a(\varphi_i, \varphi_j))_{1 \leq i,j \leq N_h}, \quad U = (u_i)_{1 \leq i \leq N_h} \quad \text{and} \quad b = (I(\varphi_j))_{1 \leq j \leq N_h}$$

where $(\varphi_1, \dots, \varphi_{N_h})$ is a basis of V_h .

Appendix
O

Appendix 1 : Standard FEM
OO

Appendix 2 : ϕ -FEM
●○○○○○

Other results
O OOO OO OO

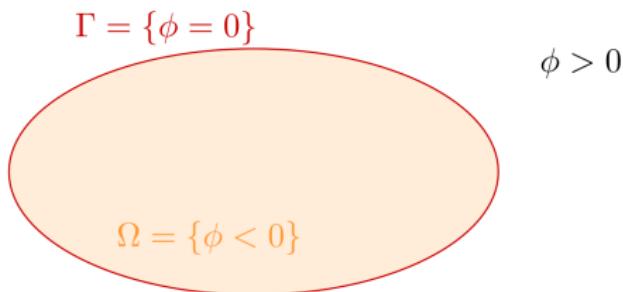
Appendix 2 : ϕ -FEM

Appendix 2 : Problem

Let $u = \phi w + g$ such that

$$\begin{cases} -\Delta u = f, \text{ in } \Omega, \\ u = g, \text{ on } \Gamma, \end{cases}$$

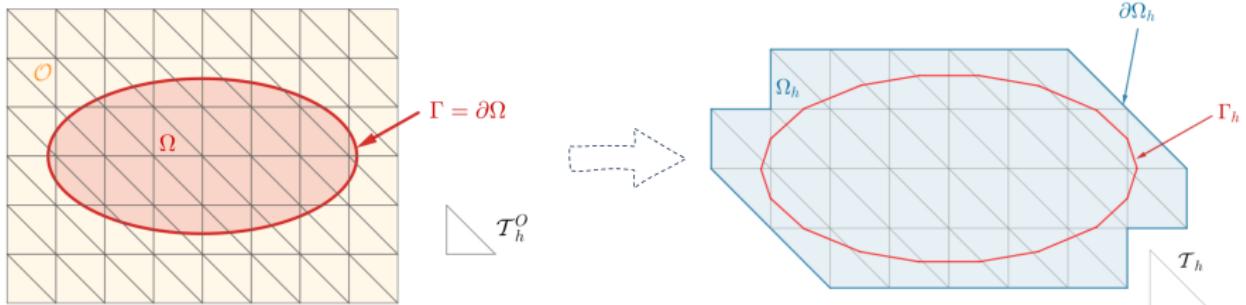
where ϕ is the level-set function and Ω and Γ are given by :



The level-set function ϕ is supposed to be known on \mathbb{R}^d and sufficiently smooth. For instance, the signed distance to Γ is a good candidate.

Remark : Thanks to ϕ and g , the boundary conditions are respected.

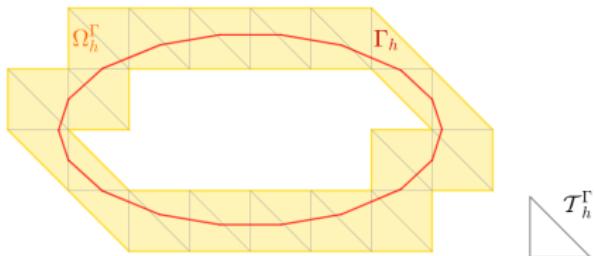
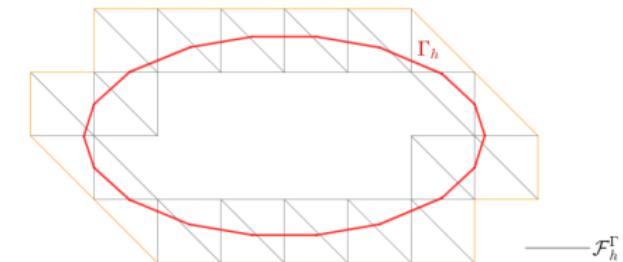
Appendix 2 : Fictitious domain



- ϕ_h : approximation of ϕ
- $\Gamma_h = \{\phi_h = 0\}$: approximate boundary of Γ
- Ω_h : computational mesh
- $\partial\Omega_h$: boundary of Ω_h ($\partial\Omega_h \neq \Gamma_h$)

Remark : n_{vert} will denote the number of vertices in each direction

Appendix 2 : Facets and Cells sets



- \mathcal{T}_h^Γ : mesh elements cut by Γ_h
- \mathcal{F}_h^Γ : collects the interior facets of \mathcal{T}_h^Γ
(either cut by Γ_h or belonging to a cut mesh element)

Appendix 2 : Poisson problem

Approach Problem : Find $w_h \in V_h^{(k)}$ such that

$$a_h(w_h, v_h) = l_h(v_h) \quad \forall v_h \in V_h^{(k)}$$

where

$$a_h(w, v) = \int_{\Omega_h} \nabla(\phi_h w) \cdot \nabla(\phi_h v) - \int_{\partial\Omega_h} \frac{\partial}{\partial n}(\phi_h w) \phi_h v + \boxed{G_h(w, v)},$$

$$l_h(v) = \int_{\Omega_h} f \phi_h v + \boxed{G_h^{rhs}(v)} \quad \text{Stabilization terms}$$

and

$$V_h^{(k)} = \{v_h \in H^1(\Omega_h) : v_h|_T \in \mathbb{P}_k(T), \forall T \in \mathcal{T}_h\}.$$

For the non homogeneous case, we replace

$$u = \phi w \quad \rightarrow \quad u = \phi w + g$$

by supposing that g is currently given over the entire Ω_h .

Appendix 2 : Stabilization terms

Independent parameter of h

Jump on the interface E

$$G_h(w, v) = \sigma h \sum_{E \in \mathcal{F}_h^\Gamma} \int_E \left[\frac{\partial}{\partial n} (\phi_h w) \right] \left[\frac{\partial}{\partial n} (\phi_h v) \right] + \sigma h^2 \sum_{T \in \mathcal{T}_h^\Gamma} \int_T \Delta(\phi_h w) \Delta(\phi_h v)$$

1st order term

2nd order term

$$G_h^{rhs}(v) = -\sigma h^2 \sum_{T \in \mathcal{T}_h^\Gamma} \int_T f \Delta(\phi_h v) - \sigma h^2 \sum_{T \in \mathcal{T}_h^\Gamma} \int_T (\Delta(\phi_h w) + f) \Delta(\phi_h v)$$

1st term : ensure continuity of the solution by penalizing gradient jumps.

→ Ghost penalty [Burman, 2010]

2nd term : require the solution to verify the strong form on Ω_h^Γ .

Purpose :

- reduce the errors created by the "fictitious" boundary
- ensure the correct condition number of the finite element matrix
- restore the coercivity of the bilinear scheme

Other results

Poisson on Bean

Additive approach on Cat

Multiplicative approach

Other results

Poisson on Bean

Additive approach on Cat

Multiplicative approach

Appendix 3 : Learn a levelset

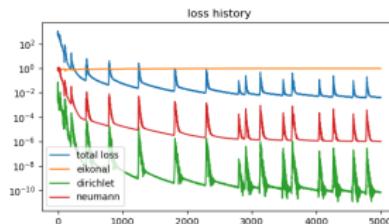
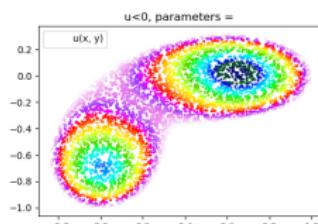
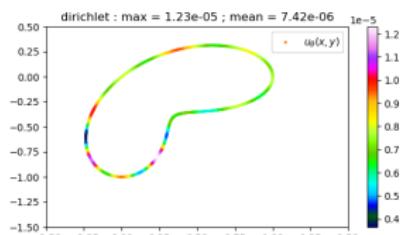
If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

$$\begin{cases} \|\nabla \phi(x)\| = 1, x \in \mathcal{O} \\ \phi(x) = 0, x \in \Gamma \\ \nabla \phi(x) = n, x \in \Gamma \end{cases}$$

with \mathcal{O} a box which contains Ω completely and n the exterior normal to Γ .

How make that ? with a PINNs [Clémot and Digne, 2023] by adding a term to regularize.

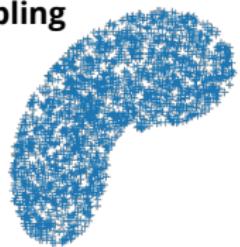
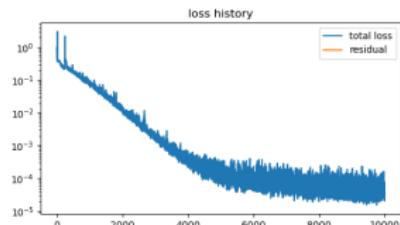
$$J_{reg} = \int_{\mathcal{O}} |\Delta \phi|^2$$



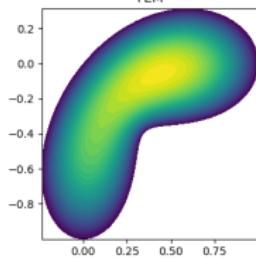
Appendix 3 : Poisson 2D

- Solving the **Poisson problem** with $f = 1$ and homogeneous Dirichlet BC.
- Looking for $u_\theta = \phi w_\theta$ with ϕ the levelset learned.

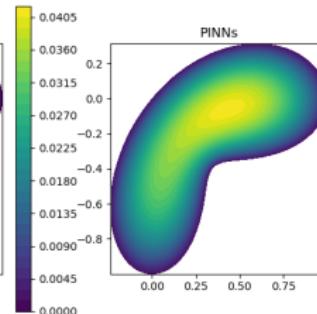
Sampling



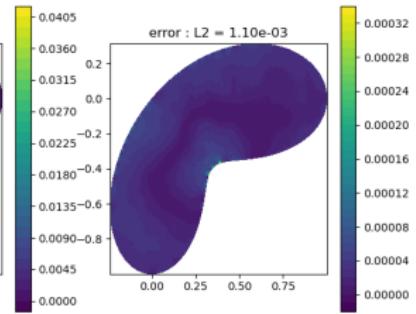
FEM



PINNs



error : $L2 = 1.10e-03$



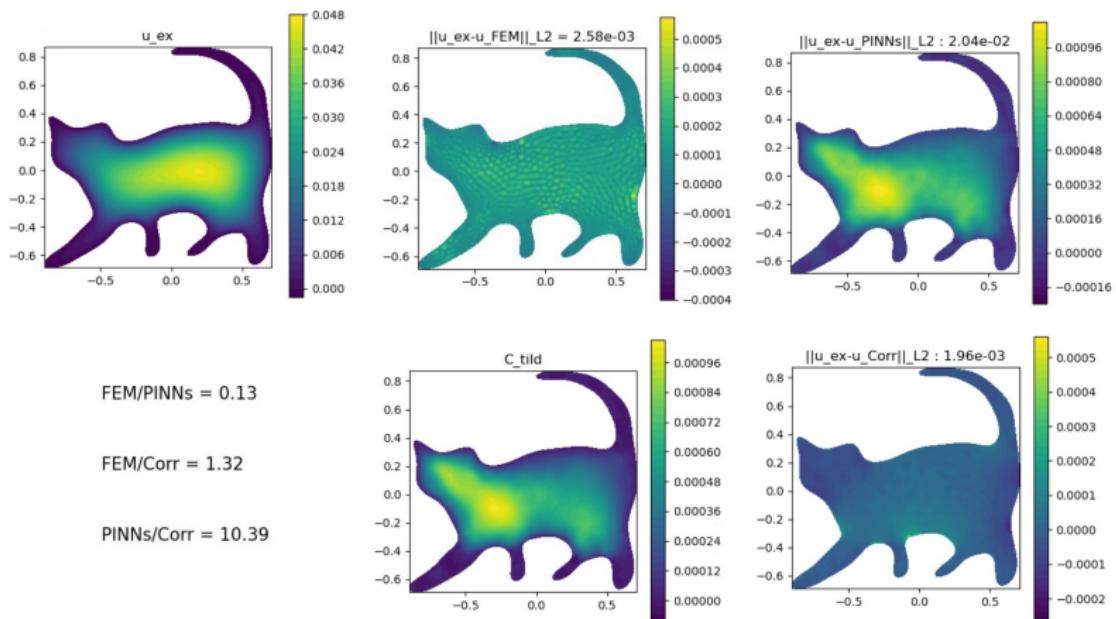
Other results

Poisson on Bean

Additive approach on Cat

Multiplicative approach

Appendix 4 : Add on Cat



Other results

Poisson on Bean

Additive approach on Cat

Multiplicative approach

Appendix 5 : Multiplicative approach

Correct by multiplying : Considering u_{NN} as the prediction of our PINNs for (P) , we define

$$u_M = u_{NN} + M$$

with M a constant chosen so that $u_M > 0$, called the enhancement constant. Thus, the correction problem consists in writing the solution as

$$\tilde{u} = u_M \times \boxed{\tilde{c}}_{\approx 1}$$

and searching $\tilde{c} : \Omega \rightarrow \mathbb{R}^d$ such that

$$\begin{cases} -\Delta(u_M \tilde{c}) = f, & \text{in } \Omega, \\ \tilde{c} = 1, & \text{on } \Gamma. \end{cases}$$