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Problem considered

Poisson problem with Dirichlet conditions :

Findu : Q — RY(d = 1,2, 3) such that Q %

— Au(X) =f(X) inQ,
u(X) =g(X) ondQ2

with A the Laplace operator, §2 a smooth bounded open set and I its boundary.

For the following examples, we will consider f(X) = 1 and g(X) = 0.

Standard PINNs : We are looking for 6, such that

0, = argminw, J(0) + wpc Joc(6)
0
where w, and w;, are the respective weights associated with

J= / (Dug + 7 and Jy — / (o — 8)°.
Q o0

Remark : In practice, we use a Monte-Carlo method to discretize the cost function by random process.
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Simple geometry

Claim on PINNSs :

Easy-to-sample shape Shape composition
Subtraction
Quadrilateral
Cylinder Q
- Union
Intersection
Ellipse

In practice : Not so easy ! We need to find
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Complex geometry

1st approach : Mapping

2nd approach : LevelSet function

Idea:

= )y a simple domain (as circle)
= () a target domain

= A mapping from ¢ to 2 :

Q= ¢()

_ (x—= 0.5/ +0.3sin(y)
Py = (y 1 0.1x + 0.12 cos(x)
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C={p=0}

6>0

Advantages :
=> Sample is easy in this case.
=> Allow to impose in hard the BC :

ug(X) = p(X)wo (X) + g(X)
Natural LevelSet :
Signed Distance Function (SDF)

Problem : SDF is a C° function
= its derivatives explodes
= we need a regular levelset
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Construct smooth SDF 1

1st solution : Approximation theory [5]
A can be singular at the boundary. Sampling at € to it solve the problem.
Curved domain

Polygonal domain

prediction, parameters = 0.50
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Loss history
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Construct smooth SDF II
2nd solution : [2]
=> How make that ? with a
If we have a boundary domain I, the SDF is solution to the Eikonal equation:
VeIl =1, xe O
$pX) =0, xel

Vo(X)=n, XeT
with O a box which contains €2 completely and n the exterior normal to I"

Advantage :
VA,
~ =
~ S = set of boundary points
~
=5 ﬁmtﬁ‘if\ = exterior normals at I
o § (evaluated at these points)
“ R

Fr Lo,
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Learn LevelSet 1

Objective of the paper:
Learn topological Skeleton (by learning SDF)
=> Skeleton correspond exactly to the gradient singularity

—> Adding the following term in theloss ¢ IVl VIV 4l
| =
Jo IIVIIV611(p) ldb = \ /
(Total Variation Regularization) || | |
Loss histol — tot ! II
1st test : Eikonal equation with TV Regularization [2] e = b
et *‘
’ IVl v S m
oy | s

@;v«x et
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Learn LevelSet I

Loss history

Sampling : Classical PINNs : Looking for ug. l ——

wer |t =gl :=2.20e-2

a0090-08

o000

Minus : Costly boundary points generation.

PINNSs - Impose BC in hard : Looking for ug = ¢wy.
o’ ploy?

050 025 000 075 00 075 100 125 150 050 025 000 025 050 075 100 125 150

Levelset derivatives explode.
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Learn LevelSet I1

2nd test : We replace the TV term by a penalization on the laplacian of the levelset

— total loss

Loss history — oo

Jreg =/ ‘A¢|2 o —— dirichlet
O . —— neumann
—— laplacian

- K

I Dirichlet error on the boundary :
Sampling: Max : 7.29¢-3 ; Mean : 1.88¢-3
o0 uslx.y) o.007
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Learn LevelSet 11

Derivatives :

02 ¢lox? o’gloy’

3 6
2 g 2
= B
150
050 025 030 o7 100 135 130 350 025 000 035 030 075 b0 135 150

= We can impose in hard boundary conditions
PINNSs - Impose BC in hard : Looking for ug = ¢wy.

Loss history

1t — residual
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Conclusion

2 main questions :
=> How to sample in complex domains?
- Using mapping
- Using Levelset (Approximation theory/Learning)
=> How can we obtain a levelset that usable for imposing boundary conditions in
hard ?
By learning the Eikonal equation with penalisation of the levelset Laplacian
To go further : We can combine the option.
(Mapping for the big domain. Level set for the hole.)

loss history prediction, parameters = 0.50
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Thank you !
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Appendix 1 : Polygonal domain [5]

= X, i=1,...,n-coordinates of the polygon
=> «; - angle between X; and X1
= r; = ||X; — X|| - Euclidean distance between X; and X
-> Ri=X—-X
We define the SDF as B(X) = i
w(X)
with

w0 =3 (24 5)e tri=n)

Fig1
and
Q det(R;, R;
t:= tan (;) _ _det(R,Ri41)
2 rifiy1 + Ri - Riga

Remark : The denominator vanishes when «;; = T, (i.e. when X lies on the boundary of the polygon),
but there ¢;(X) = 0.
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Appendix 2 : Curved domain [5]

Considering a nonconvex domain.

= ¢(t) - parametrization of the curved boundary I" : [0,1] — R
= (/(t) - its tangent

= 'L (t) - rotating ¢’ (t) through 90° (clockwise)

We define the SDF as y3(x,v)

6(x) = (Wpl(x))l/p

Wp(X> — /0 (C(t) _X) - (t)

[le(t) — x|+

with

(Belyaev et al. [1] introduced L,-distance fields (p > 1), which approximates the exact distance function.)

Remark : For X € T (integral is singular), we set ¢(X) = 0.
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Appendix 3 : Neural Skeleton

Simple example : Skeleton of the unit square.

(0,1)
-y #(x,y)
0.-1) Vglx.y)
— Gradient
X 1-x discontinuity
(1,0) (-1,0)
y
(0,1)
(0,0) (1,0)
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