

How to work with complex geometries in PINNs ?

Authors:

Frédérique LECOURTIER

Supervisors:

Emmanuel FRANCK

Michel DUPREZ

Vanessa LLERAS

March 26, 2024

Problem considered

Poisson problem with Dirichlet conditions :

Find $u : \Omega \rightarrow \mathbb{R}^d$ ($d = 1, 2, 3$) such that

$$\begin{cases} -\Delta u(X) = f(X) & \text{in } \Omega, \\ u(X) = g(X) & \text{on } \partial\Omega \end{cases}$$

with Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

For the following examples, we will consider $f(X) = 1$ and $g(X) = 0$.

Standard PINNs : We are looking for θ_u such that

$$\theta_u = \operatorname{argmin}_{\theta} w_r J_r(\theta) + w_{bc} J_{bc}(\theta)$$

where w_r and w_{bc} are the respective weights associated with

$$J_r = \int_{\Omega} (\Delta u_{\theta} + f)^2 \text{ and } J_{bc} = \int_{\partial\Omega} (u_{\theta} - g)^2.$$

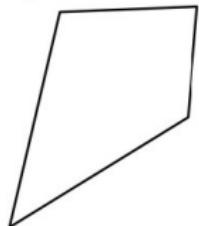
Remark : In practice, we use a Monte-Carlo method to discretize the cost function by random process.

Simple geometry

Claim on PINNs : No mesh, so easy to go on complex geometry !

Easy-to-sample shape

Quadrilateral

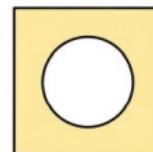


Ellipse

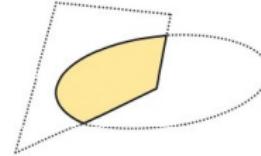
Cylinder

Shape composition

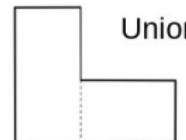
Subtraction



Intersection



Union



In practice : Not so easy ! We need to find **how to sample in the geometry**.

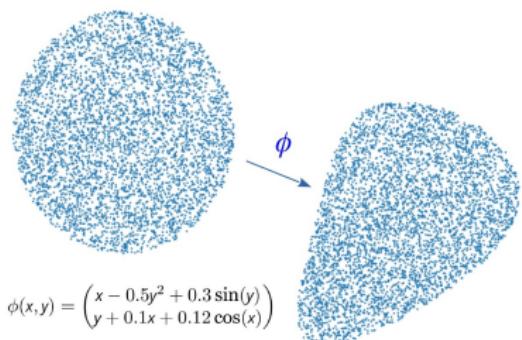
Complex geometry

1st approach : Mapping

Idea :

- Ω_0 a simple domain (as circle)
- Ω a target domain
- A mapping from Ω_0 to Ω :

$$\Omega = \phi(\Omega_0)$$



2nd approach : LevelSet function

$$\Gamma = \{\phi = 0\}$$

$$\phi > 0$$

$$\Omega = \{\phi < 0\}$$

Advantages :

- Sample is easy in this case.
- Allow to impose in hard the BC :
$$u_\theta(X) = \phi(X)w_\theta(X) + g(X)$$

Natural LevelSet :

Signed Distance Function (SDF)

Problem : SDF is a \mathcal{C}^0 function

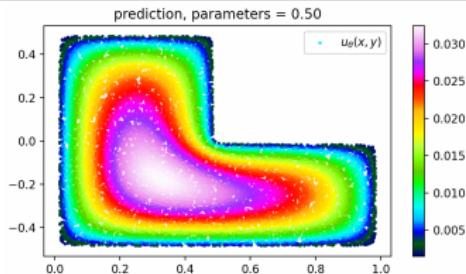
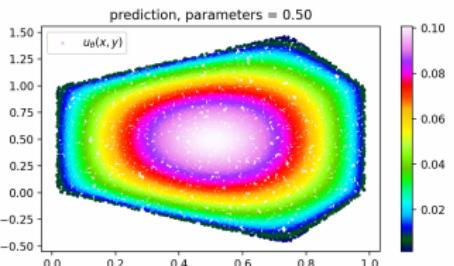
- ⇒ its derivatives explodes
- ⇒ we need a regular levelset

Construct smooth SDF I

1st solution : Approximation theory [5]

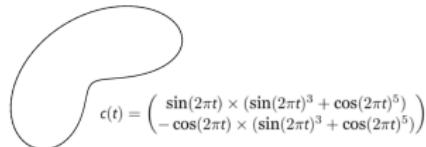
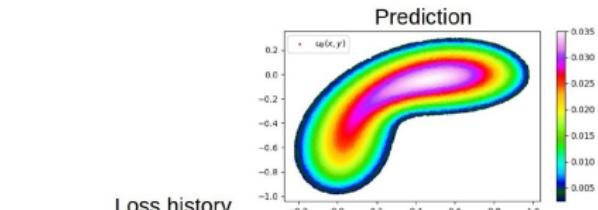
$\Delta\phi$ can be singular at the boundary. Sampling at ϵ to it solve the problem.

Polygonal domain Appendix 1



Curved domain Appendix 2

Minus : Use of a parametric curve $c(t)$.



Construct smooth SDF II

2nd solution : Learn the levelset. [2]

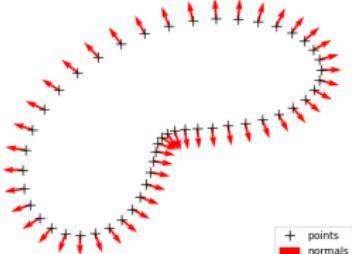
→ How make that ? with a PINNs.

If we have a boundary domain Γ , the SDF is solution to the Eikonal equation:

$$\begin{cases} \|\nabla \phi(x)\| = 1, x \in \mathcal{O} \\ \phi(x) = 0, x \in \Gamma \\ \nabla \phi(x) = n, x \in \Gamma \end{cases}$$

with \mathcal{O} a box which contains Ω completely and n the exterior normal to Γ .

Advantage : No need for parametric curves.



- set of boundary points
- exterior normals at Γ
(evaluated at these points)

Learn LevelSet I

Objective of the paper :

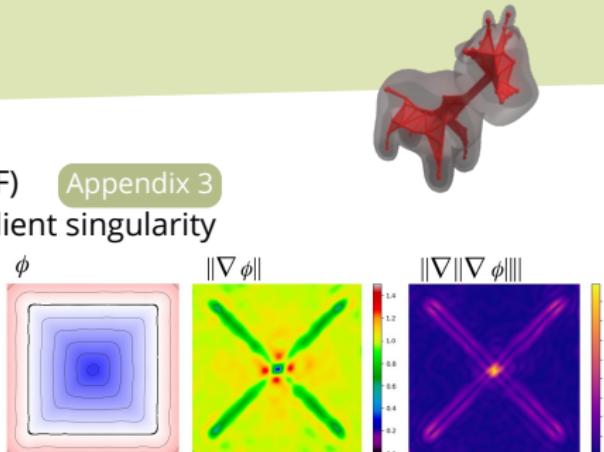
Learn topological Skeleton (by learning SDF) Appendix 3

→ Skeleton correspond exactly to the gradient singularity

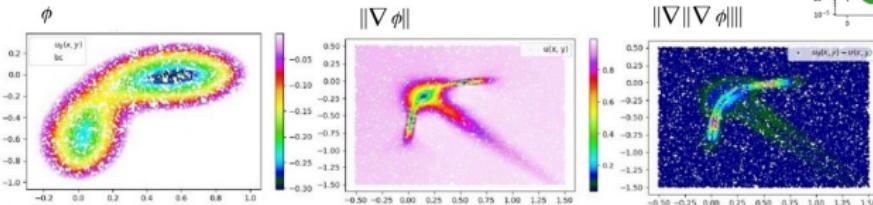
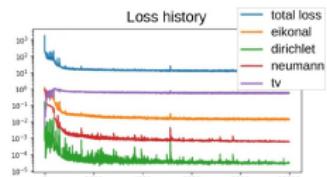
→ Adding the following term in the loss

$$\int_{\mathcal{O}} \|\nabla \|\nabla \phi\|\|(p)\| dp$$

(Total Variation Regularization)

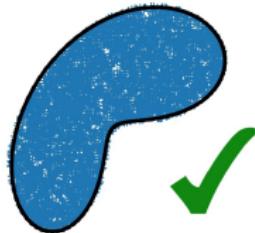


1st test : Eikonal equation with TV Regularization [2]

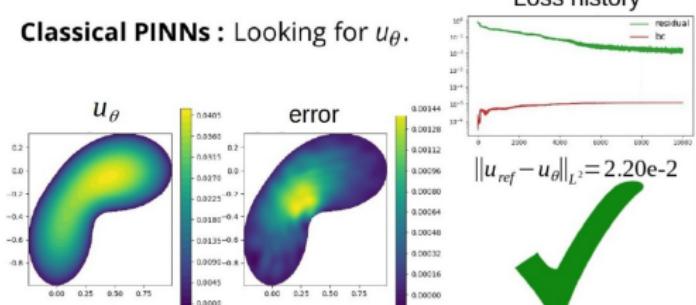


Learn LevelSet I

Sampling :

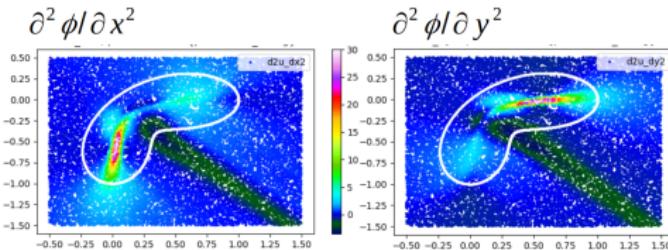


Classical PINNs : Looking for u_θ .



Minus : Costly boundary points generation.

PINNs - Impose BC in hard : Looking for $u_\theta = \phi w_\theta$.

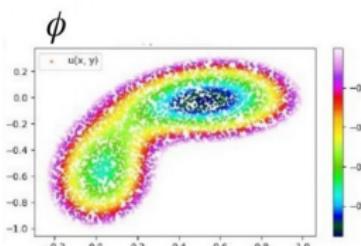
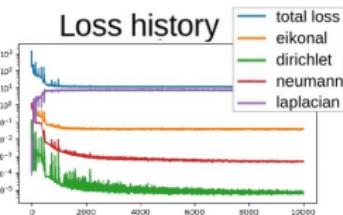


Levelset derivatives explode.

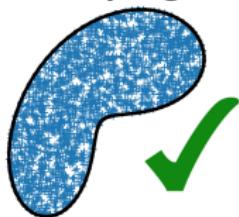
Learn LevelSet II

2nd test : We replace the TV term by a penalization on the laplacian of the levelset

$$J_{reg} = \int_{\mathcal{O}} |\Delta \phi|^2$$

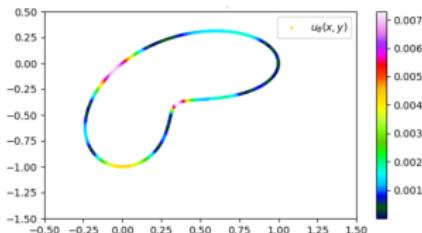


Sampling :



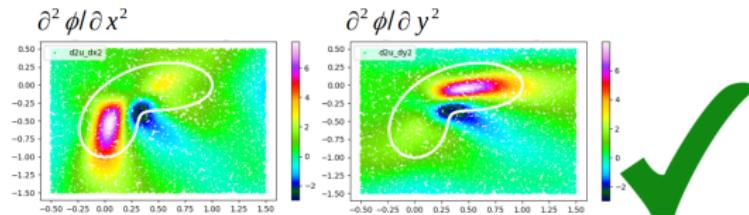
Dirichlet error on the boundary :

Max : 7.29e-3 ; Mean : 1.88e-3



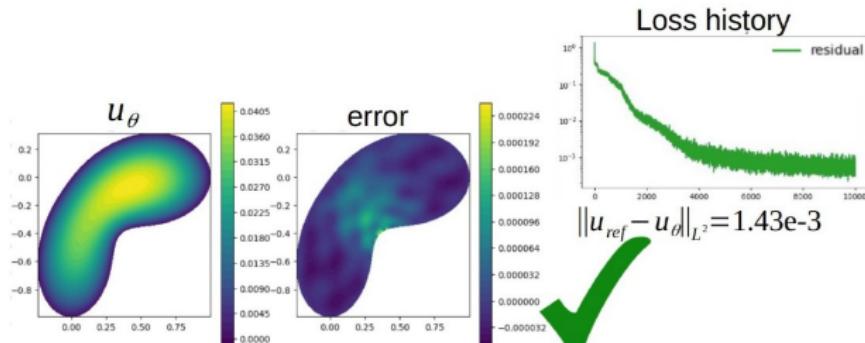
Learn LevelSet II

Derivatives :



⇒ We can impose in hard boundary conditions

PINNs - Impose BC in hard : Looking for $u_\theta = \phi w_\theta$.



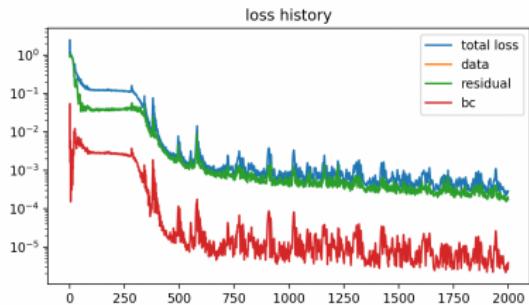
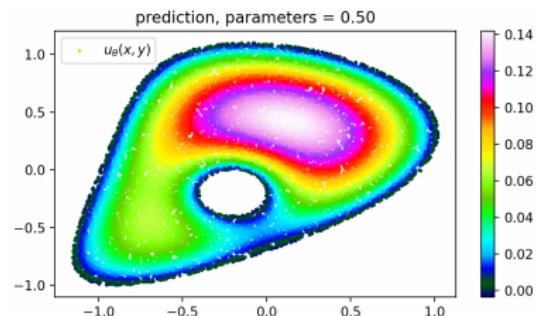
Conclusion

2 main questions :

- How to sample in complex domains?
 - Using mapping
 - Using Levelset (Approximation theory/Learning)
- How can we obtain a levelset that usable for imposing boundary conditions in hard ?
By learning the Eikonal equation with penalisation of the levelset Laplacian

To go further : We can combine the option.

(Mapping for the big domain. Level set for the hole.)



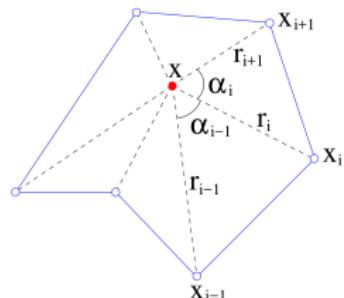
Thank you !

Bibliography

- [1] Alexander Belyaev, Pierre-Alain Fayolle, and Alexander Pasko. Signed Lp-distance fields. *Computer-Aided Design*.
- [2] Mattéo Clémot and Julie Digne. Neural skeleton: Implicit neural representation away from the surface. *Computers and Graphics*.
- [3] Pierre-Alain Fayolle. Signed Distance Function Computation from an Implicit Surface.
- [4] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*.
- [5] N. Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. *Computer Methods in Applied Mechanics and Engineering*.
- [6] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert's Guide to Training Physics-informed Neural Networks.

Appendix 1 : Polygonal domain [5]

- $X_i, i = 1, \dots, n$ - coordinates of the polygon
- α_i - angle between X_i and X_{i+1}
- $r_i = \|X_i - X\|$ - Euclidean distance between X_i and X
- $R_i = X_i - X$



We define the SDF as

$$\phi(X) = \frac{2}{W(X)}$$

with

$$W(X) = \sum_{i=1}^n \left(\frac{1}{r_i} + \frac{1}{r_{i+1}} \right) t_i \quad (r_{n+1} := r_1)$$

and

$$t_i := \tan \left(\frac{\alpha_i}{2} \right) = \frac{\det(R_i, R_{i+1})}{r_i r_{i+1} + R_i \cdot R_{i+1}}$$

Remark : The denominator vanishes when $\alpha_i = \pi$, (i.e. when X lies on the boundary of the polygon), but there $\phi_i(X) = 0$.

Appendix 2 : Curved domain [5]

Considering a nonconvex domain.

- $c(t)$ - parametrization of the curved boundary $\Gamma : [0, 1] \rightarrow \mathbb{R}$
- $c'(t)$ - its tangent
- $c'^\perp(t)$ - rotating $c'(t)$ through 90° (clockwise)

We define the SDF as

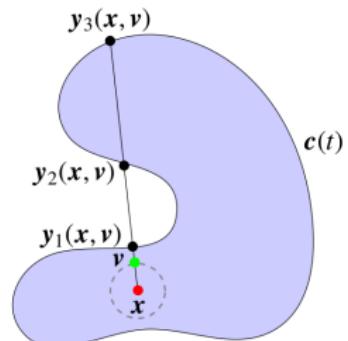
$$\phi(X) = \left(\frac{1}{W_p(X)} \right)^{1/p}$$

with

$$W_p(X) = \int_0^1 \frac{(c(t) - X) \cdot c'^\perp(t)}{\|c(t) - X\|^{2+p}}$$

(Belyaev et al. [1] introduced L_p -distance fields ($p \geq 1$), which approximates the exact distance function.)

Remark : For $X \in \Gamma$ (integral is singular), we set $\phi(X) = 0$.



Appendix 3 : Neural Skeleton

Simple example : Skeleton of the unit square.

