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Problem considered
Poisson problem with Dirichlet conditions :
Find u : Ω → Rd(d = 1, 2, 3) such that{

−∆u(X) = f(X) inΩ,

u(X) = g(X) on ∂Ω
with∆ the Laplace operator,Ω a smooth bounded open set and Γ its boundary.
For the following examples, we will consider f(X) = 1 and g(X) = 0.

Standard PINNs : We are looking for θu such that

θu = argmin
θ

wr Jr(θ) + wbc Jbc(θ)

where wr and wbc are the respective weights associated with

Jr =
∫
Ω

(∆uθ + f)2 and Jbc =
∫
∂Ω

(uθ − g)2.

Remark : In practice, we use a Monte-Carlo method to discretize the cost function by random process.



2/10

2/10

Simple geometry
Claim on PINNs : No mesh, so easy to go on complex geometry !

In practice : Not so easy ! We need to find how to sample in the geometry.
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Complex geometry
1st approach : Mapping 2nd approach : LevelSet function

Idea :
Ù Ω0 a simple domain (as circle)
Ù Ω a target domain
Ù A mapping fromΩ0 toΩ :

Ω = ϕ(Ω0) Advantages :
Ù Sample is easy in this case.
Ù Allow to impose in hard the BC :

uθ(X) = ϕ(X)wθ(X) + g(X)

Natural LevelSet :
Signed Distance Function (SDF)

Problem : SDF is a C0 function
⇒ its derivatives explodes
⇒ we need a regular levelset
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Construct smooth SDF I
1st solution : Approximation theory [5]
∆ϕ can be singular at the boundary. Sampling at ϵ to it solve the problem.

Polygonal domain Appendix 1 Curved domain Appendix 2

Minus : Use of a parametric curve c(t).
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Construct smooth SDF II
2nd solution : Learn the levelset. [2]
Ù How make that ? with a PINNs.

If we have a boundary domain Γ, the SDF is solution to the Eikonal equation:
||∇ϕ(X)|| = 1, X ∈ O
ϕ(X) = 0, X ∈ Γ

∇ϕ(X) = n, X ∈ Γ
withO a box which containsΩ completely and n the exterior normal to Γ.

Advantage : No need for parametric curves.

Ù set of boundary points
Ù exterior normals at Γ
(evaluated at these points)
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Learn LevelSet I
Objective of the paper :
Learn topological Skeleton (by learning SDF) Appendix 3
Ù Skeleton correspond exactly to the gradient singularity
Ù Adding the following term in the loss∫

O ||∇||∇ϕ||(p)||dp

(Total Variation Regularization)

1st test : Eikonal equation with TV Regularization [2]
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Learn LevelSet I

Sampling :

Minus : Costly boundary points generation.

PINNs - Impose BC in hard : Looking for uθ = ϕwθ .

Levelset derivatives explode.
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Learn LevelSet II
2nd test : We replace the TV term by a penalization on the laplacian of the levelset

Sampling :
Dirichlet error on the boundary :
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Learn LevelSet II
Derivatives :

⇒We can impose in hard boundary conditions
PINNs - Impose BC in hard : Looking for uθ = ϕwθ .
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Conclusion
2 main questions :
Ù How to sample in complex domains?

– Using mapping
– Using Levelset (Approximation theory/Learning)

Ù How can we obtain a levelset that usable for imposing boundary conditions in
hard ?
By learning the Eikonal equation with penalisation of the levelset Laplacian

To go further : We can combine the option.
(Mapping for the big domain. Level set for the hole.)
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Thank you !
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Appendix 1 : Polygonal domain [5]

Ù Xi, i = 1, . . . , n - coordinates of the polygon

Ù αi - angle between Xi and Xi+1

Ù ri = ||Xi − X|| - Euclidean distance between Xi and X

Ù Ri = Xi − X

We define the SDF as ϕ(X) =
2

W(X)
with

W(X) =
n∑

i=1

(
1

ri
+

1

ri+1

)
ti (rn+1 := r1)

and

ti := tan
(αi

2

)
=

det(Ri, Ri+1)

riri+1 + Ri · Ri+1

Remark : The denominator vanishes when αi = π, (i.e. when X lies on the boundary of the polygon),
but there ϕi(X) = 0.
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Appendix 2 : Curved domain [5]
Considering a nonconvex domain.
Ù c(t) - parametrization of the curved boundary Γ : [0, 1] → R
Ù c′(t) - its tangent
Ù c′⊥(t) - rotating c′(t) through 90° (clockwise)

We define the SDF as

ϕ(X) =

(
1

Wp(X)

)1/p

with

Wp(X) =
∫ 1

0

(c(t)− X) · c′⊥(t)
||c(t)− X||2+p

(Belyaev et al. [1] introduced Lp-distance fields (p ≥ 1), which approximates the exact distance function.)

Remark : For X ∈ Γ (integral is singular), we set ϕ(X) = 0.
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Appendix 3 : Neural Skeleton
Simple example : Skeleton of the unit square.
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