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Scientific context
Context : Create real-time digital twins of an organ, described by a levelset function.
→ This levelset function can easily be obtained from medical images.
ϕ-FEM Method : New fictitious domain finite element method.
Ù domain given by a level-set function⇒ don’t require a mesh fitting the boundary
Ù allow to work on complex geometries
Ù ensure geometric quality of the mesh

Practical cases: Real-time simulation, shape optimization...
Neural Network : Obtain a solution quickly.
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Problem considered
Elliptic problem with Dirichlet conditions :
Find u : Ω→ Rd(d = 1, 2, 3) such that{

L(u) = −∇ · (A(x)∇u(x)) + c(x)u(x) = f(x) inΩ,

u(x) = g(x) on ∂Ω
(1)

with A a definite positive coercivity condition and c a scalar. We consider∆ the
Laplace operator,Ω a smooth bounded open set and Γ its boundary.
Weak formulation :

Find u ∈ V such that a(u, v) = l(v)∀v ∈ V

with

a(u, v) =
∫
Ω

(A(x)∇u(x)) · ∇v(x) + c(x)u(x)v(x) dx

l(v) =
∫
Ω

f(x)v(x) dx
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Aim of the talk
Objective : Show that the philosophy behind most of the methods is the same.

Mesh-based methods // Physically informed learning

Numerical methods : Discretize an infinite-dimensional problem (unknown =
function) and solve it in a finite-dimensional space (unknown = vector).
• Encoding : we encode the problem in a finite-dimensional space
• Approximation : solve the problem in finite-dimensional space
• Decoding : bring the solution back into infinite dimensional space

Encoding Approximation Decoding
f → θf θf → θu θu → uθ

Projector : Encoder + Decoder

f
θf

fθ
Encod

er Decoder

Projector
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Encoding/Decoding - FEMs

• Decoding : Linear combination of piecewise polynomial function φi.

uθ(x) = D(θu)(x) =
N∑

i=1

(θu)iφi(x)

⇒ linear decoding⇒ approximation space VN = vectorial space
⇒ existence and uniqueness of the orthogonal projector

• Encoding : Optimization process.

θf = E(f) = argmin
θ∈RN

∫
Ω

||fθ(x)− f(x)||2dx

⇔ Orthogonal projection on vector space VN = Vect{φ1, . . . , φN}.

θf = E(f) = M−1b(f)

with Mij =
∫
Ω
φi(x)φj(x) and bi(f) =

∫
Ω
φi(x)f(x). Appendix 1
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Approximation
Idea : Project a certain form of the equation onto the vector space VN.
We introduce the residual insideΩ and on the boundary ∂Ω defined by

Rin(v) = L(v)− f and Rbc(v) = v− g

Discretization : Degrees of freedom problem (which also has a unique solution)

u = argmin
v∈H0

1(Ω)

J(v) −→ θu = argmin
θ∈RN

J(θ)

with J a functional to minimize.

Variants : Depends on the problem form used for projection.

Symmetric spatial PDE Any type of PDE
Problem - Energetic form Problem - Least-square form

Galerkin projection Galerkin Least-square projection
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Energetic form
Discrete Minimization Problem :

uθ(x) = argmin
v∈VN

J(v), J(v) = Jin(v) + Jbc(v) (2)

with

Jin(v) =
1

2

∫
Ω

L(v)v−
∫
Ω

fv and Jbc(v) =
1

2

∫
∂Ω

Rbc(v)
2

Remark : This form of the problem is due to the Lax-Milgram theorem as a is symmetrical.

Discrete Minimization Problem (2)⇔ PDE (1) :
∇v Jin(v) = Rin(v) , ∇v Jbc(v) = Rbc(v) Appendix 2

uθ sol
of (2)

⇔
{
∇v Jin(uθ) = 0

∇v Jbc(uθ) = 0
⇔

{
Rin(uθ) = 0 in Ω

uθ = g on ∂Ω
⇔

uθ approx
sol of (1)

Discrete
min pb PDE
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Galerkin Projection
DoFs minimization Problem :

θu = argmin
θ∈RN

J(θ), J(θ) = Jin(θ) =
1

2

∫
Ω

L(vθ)vθ −
∫
Ω

fvθ (3)

Remark : Here, we are only interested in the minimisation problem onΩ.

Galerkin projection : Consists in resolving

⟨Rin(uθ(x)), φi⟩L2 = 0, ∀i ∈ {1, . . . ,N} (4)

Galerkin Projection (4)⇔ PDE (1) :
∇θ J(θ) =

(∫
Ω Rin(vθ)φi

)
i=1,...,N

Appendix 3

uθ approx
sol of (1) ⇔ uθ sol

of (2)
⇔ θu sol

of (3)
⇔ ∇θ J(θ) = 0 ⇔ uθ sol

of (4)

PDE
Discrete
min pb

DoFs
min pb

Galerkin
projection
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Least-Square form
Discrete Minimization Problem :

uθ(x) = argmin
v∈VN

J(v), J(v) = Jin(v) + Jbc(v)

with

Jin(v) =
1

2

∫
Ω

Rin(v)
2 and Jbc(v) =

1

2

∫
∂Ω

Rbc(v)
2

DoFs minimization Problem :

θu = argmin
θ∈RN

J(θ), J(θ) = Jin(θ) =
1

2

∫
Ω

(L(vθ)− f)2

Least-Square Galerkin projection : Consists in resolving

⟨Rin(uθ(x)), (∇θRin(uθ(x)))i⟩L2 = 0, ∀i ∈ {1, . . . ,N}
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Steps Decomposition - FEMs

Encoding Approximation Decoding

f → θf θf → θu θu → uθ

θf = E(f)
= M−1b(f)

Galerkin LS Galerkin uθ(x) = D(θu)(x)

=

N∑
i=1

(θu)iφi
⟨R(uθ), φi⟩L2 = 0 ⟨R(uθ), (∇θR(uθ))i⟩L2 = 0

Aθu = B

Example : Galerkin projection.
For i ∈ {1, . . . , N},

⟨R(uθ), φi⟩L2 = 0

⇐⇒
∫
Ω

L(uθ)φi =

∫
Ω

fφi

⇐⇒
N∑

j=1

(θu)j

∫
Ω
φiL(φj) =

∫
Ω

fφi

Aθu = B with

Ai,j =
∫
Ω
φiL(φj) , Bi =

∫
Ω

fφi
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Encoding/Decoding - NNs

• Decoding : Implicit neural representation.

uθ(x) = D(θu)(x) = uNN(x)

with uNN a neural network (for example a MLP).
⇒ non-linear decoding⇒ approximation spaceMN = finite-dimensional manyfold
⇒ there is no unique projector

• Encoding : Optimization process.

θf = E(f) = argmin
θ∈RN

∫
Ω

||fθ(x)− f(x)||2dx
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Neural Network Decoder
Advantages of a non-linear decoder :

• We gain in the richness of the approximation

• We can hope to significantly reduce the number of degrees of freedom

• This avoids the need to use meshes.

polynomial models
⇒ use meshes

NN models
⇒ no need to use meshes
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Physically Informed Learning
Encoding/Decoding
Approximation
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Approximation
Idea : Project a certain form of the equation onto the manyfoldMN.

Discretization : Degrees of freedom problem (no mesh).

u = argmin
v∈H0

1(Ω)

J(v) −→ θu = argmin
θ∈RN

J(θ)

with J a functional to minimize.

Variants : Depends on the problem form used for projection.

Symmetric spatial PDE Any type of PDE
Problem - Energetic form Problem - Least-square form

Deep-Ritz Standard PINNs
(Galerkin projection) (Galerkin Least-square projection)
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Deep-Ritz
DoFs Minimization Problem : Considering the energetic form of our PDE, our discrete problem
is

θu = argmin
θ∈RN

αJin(θ) + βJbc(θ) (5)

with

Jin(θ) =
1

2

∫
Ω

L(vθ)vθ −
∫
Ω

fvθ and Jbc(θ) =
1

2

∫
∂Ω

(vθ − g)2

Monte-Carlo method : Discretize the cost function by random process.

• (x1, . . . , xn) randomly drawn onΩ

Jin(θ) =
1

2n

n∑
i=1

L(vθ(xi))vθ(xi)−
1

n

n∑
i=1

f(xi)vθ(xi)

• (y1, . . . , ynb) randomly drawn on ∂Ω

Jbc(θ) =
1

2nb

nb∑
i=1

(vθ(yi)− g(yi))
2

Remark : Ù Two different random generation processes (to have enough boundary points)
Ù Weights α and β still need to be determined
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Standard PINNs
DoFs Minimization Problem : Considering the least-square form of our PDE, our
discrete problem is

θu = argmin
θ∈RN

αJin(θ) + βJbc(θ) (6)

with

Jin(θ) =
1

2

∫
Ω

(L(vθ)− f)2 and Jbc(θ) =
1

2

∫
∂Ω

(vθ − g)2

Monte-Carlo method : Discretize the cost function by random process.
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Steps Decomposition - NNs

Encoding Approximation Decoding

Mesh-based Methods

θf = E(f)
= M−1b(f)

Galerkin LS Galerkin uθ(x) = D(θu)(x)

=
N∑

i=1

(θu)iφi
⟨R(uθ), φi⟩ = 0 ⟨R(uθ), (∇θR(uθ))i⟩ = 0

Aθu = B

Physically informed learning

θf = min
θ∈RN

∫
Ω
||fθ − f||2

Deep-Ritz Standard PINNs

uθ(x) = uNN(x)Energetic Form LS Form

θu = argminθ∈RN J(θ)

Connection : Mesh-Based Methods // Physically Informed Learning
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Our hybrid method
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ϕ-FEMMethod
Main ideas : Appendix 8

• Domain defined by a LevelSet Function ϕ. • We are looking for w such that u = ϕw+ g.
Thus, the decoder is written as

uθ(x) = Dθw(x) = ϕ(x)
N∑

i=1

(θw)iφi + g(x)

• Mesh of a fictitious domain containingΩ.
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Impose exact BC in PINNs
Considering the least squares form of our PDE, we impose the exact boundary
conditions by writing our solution as

uθ = ϕwθ + g

where wθ is our decoder (defined by a neural network such as an MLP).
We then consider the same minimization problem by removing the cost function
associated with the boundary

θu = argmin
θ∈RN

Jin(θ) +���Jbc(θ)

with

Jin(θ) =
1

2

∫
Ω

(L(ϕwθ + g)− f)2 and
����������
Jbc(θ) =

1

2

∫
∂Ω

(vθ − g)2

Connection : ϕ-FEM // Exact BC in PINNs
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Conclusion
What has been seen ?

• ”Physical Informed Learning” = extension of classic numerical methods
→ where decoder belongs to a manyfold

• advantage in high dimensions (parametric PDEs)

• advantage in the context of complex geometries (mesh-free methods)

Our hybrid approach : Appendix 7

• It combines
Ù Speed of neural networks in predicting a solution
Ù Precision of FEM methods to correct and certify the prediction of the NN

(which can be completely wrong, on an unknown dataset for example)

• Encouraging results on simple geometries Appendix 9

• Difficulties on complex geometries - Important that its derivatives don’t explode→
Next step: learning levelset functions (Eikonal equation)
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Thank you !
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Appendix 1 : Encoding - FEMs
We want to project f onto the vector subspace VN so that fθ = pVN(f)
then ∀i ∈ {1, . . . ,N}, we have

⟨fθ − f, φi⟩ = 0

⇐⇒ ⟨fθ, φi⟩ = ⟨f, φi⟩

⇐⇒
N∑

j=1

(θf)j⟨φj, φi⟩ = ⟨f, φi⟩

⇐⇒ Mθf = b(f)

⇐⇒ θf = M−1b(f)

with

Mij = ⟨φi, φj⟩ =
∫
Ω

φi(x)φj(x) dx

bi(f) = ⟨f, φi⟩ =
∫
Ω

f(x)φi(x) dx
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Appendix 2 : Energetic form I
Let’s compute the gradient of J with respect to v with

J(v) = Jin(v) + Jbc(v) =

(
1

2

∫
Ω

L(v)v−
∫
Ω

fv

)
+

(
1

2

∫
∂Ω

Rbc(v)
2

)
• First, let’s calculate the differential of Jin with respect to v.

Jin(v+ ϵh) =
1

2

∫
Ω

(A∇(v+ ϵh)) · ∇(v+ ϵh) + c(v+ ϵh)2 −
∫
Ω

f(v+ ϵh)

By bilinearity of the scalar product and by symmetry of A, we finally obtain

DJin(v) · h = lim
ϵ→0

Jin(v+ ϵh)− Jin(v)
ϵ

=

∫
Ω

(−∇ · (A∇v) + cv− f)h

And thus
∇v Jin(v) = L(v)− f = Rin(v)



3/19

3/19

Mesh-based methods Physically-Informed Learning Our hybrid method

Appendix 2 : Energetic form II
• In the same way, we can compute the differential of Jbc with respect to v.

Jbc(v+ ϵh) =
1

2

∫
∂Ω

v2 + 2ϵvh+ ϵ2h2 − 2vg− 2ϵhg+ g2

Then

DJbc(v) · h = lim
ϵ→0

Jbc(v+ ϵh)− Jbc(v)
ϵ

=

∫
∂Ω

(v− g)h

And thus

∇v Jbc(v) = (v− g) = Rbc(v)

Finally
∇v J(v) = ∇v Ji(v) +∇v Jbc(v) = R(v)
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Appendix 3 : Galerkin Projection
Let’s compute the gradient of J with respect to θ with

J(θ) = Jin(θ) =
1

2

∫
Ω

L(uθ)vθ −
∫
Ω

fvθ

First, we define

vθ =

N∑
i=1

θiφi = θ · φ and vθ+ϵh = (θ + ϵh) · φ = vθ + ϵvh

Then since A is symmetric

DJ(θ) · h =

∫
Ω

R(vθ)vh =
N∑

i=1

hi

∫
Ω

R(vθ)φi

Finally

∇θ J(θ) =

(∫
Ω

R(vθ)φi

)
i=1,...,N
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Appendix 4 : Least-Square form I
Let’s compute the gradient of J with respect to v with

J(v) = Jin(v) + Jbc(v) =

(
1

2

∫
Ω

Rin(v)
2

)
+

(
1

2

∫
∂Ω

Rbc(v)
2

)

• First, let’s calculate the differential of Jin with respect to v.

DJin(v) · h = ⟨∇ · (A∇h),∇ · (A∇v)− cv+ f⟩+ ⟨ch,−∇ · (A∇v) + cv− f⟩
= −⟨∇ · (A∇h), Rin(v)⟩+ ⟨ch, Rin(v)⟩
= ⟨−∇ · (A∇Rin(v)) + cRin(v), h⟩
= ⟨L(Rin(v)), h⟩

And thus
∇v Jin(v) = L(Rin(v))
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Appendix 4 : Least-Square form II
• In the same way, we can compute the differential of Jbc with respect to v.

Jbc(v+ ϵh) =
1

2

∫
∂Ω

v2 + 2ϵvh+ ϵ2h2 − 2vg− 2ϵhg+ g2

Then

DJbc(v) · h = lim
ϵ→0

Jbc(v+ ϵh)− Jbc(v)
ϵ

=

∫
∂Ω

(v− g)h

And thus

∇v Jbc(v) = (v− g) = Rbc(v)

Finally
∇v J(v) = L(R(v))1Ω + (v− g)1∂Ω
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Appendix 5 : LS Galerkin Projection
Let’s compute the gradient of J with respect to θ with

J(θ) = Jin(θ) =
1

2

∫
Ω

(L(uθ)− f)2

First, we define

vθ =

N∑
i=1

θiφi = θ · φ and vθ+ϵh = (θ + ϵh) · φ = vθ + ϵvh

Then since A is symmetric

DJ(θ) · h =

∫
Ω

L(R(vθ))vh =
N∑

i=1

hi

∫
Ω

L(R(vθ))φi

Finally

∇θ J(θ) =

(∫
Ω

L(R(vθ))φi

)
i=1,...,N
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Appendix 6 : ADAMMethod
ADAM = ”Adaptive Moment Estimation” - Combine the idea of Moment and RMSProp.

1 : m← β1m+ (1− β1)∇fx
1− βT

1

2 : s← β2s+ (1− β2)∇2fx
1− βT

2

3 : x← x− ℓ
m√
s+ ϵ

with

• T the number of iteration (starting at 1)

• ϵ a smoothing parameter

• βi ∈]0, 1[ which converge quickly to 0.
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Our hybrid method
Appendix 7 : Description
Appendix 8 : ϕ-FEM Method
Appendix 9 : Results
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Appendix 7 : Objective
Current Objective : Develop hybrid finite element / neural network methods.

OFFLINE :
Several Geometries

+

Several Forces Train a PINNs

ONLINE :
1 Geometry - 1 Force

Get PINNs
prediction

Correct prediction
with ϕ-FEM

On going work :
• Geometry : 2D, simple, fixed (as circle, ellipse..) → 3D / complex / variable

• PDE : simple, static (Poisson problem) → complex / dynamic (elasticity, hyper-elasticity)

• Neural Network : simple and defined everywhere (PINNs) → Neural Operator
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Appendix 7 : Correction

1 Geometry - 1 Force

ϕ and f

(and  g)

Get PINNs
prediction

uNN = ϕwNN + g

Correct prediction
with ϕ-FEM

uNN → ũ = uNN + ϕC

Correct by adding : Considering uNN as the prediction of our PINNs (trained to learn
the solution of the elliptic problem), the correction problem consists in writing the
solution as

ũ = uNN + C̃
≪1

and searching C̃ : Ω→ Rd such that{
L(C̃) = f̃, inΩ,

C̃ = 0, on Γ,

with f̃ = f− L(uNN) and C̃ = ϕC for the ϕ-FEM method.
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Our hybrid method
Appendix 7 : Description
Appendix 8 : ϕ-FEM Method
Appendix 9 : Results
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Appendix 8 : Problem
Let u = ϕw+ g such that {

−∆u = f, inΩ,

u = g, on Γ,

where ϕ is the level-set function andΩ and Γ are given by :

The level-set function ϕ is supposed to be known onRd and sufficiently smooth.
For instance, the signed distance to Γ is a good candidate.

Remark : Thanks to ϕ and g, the boundary conditions are respected.
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Appendix 8 : Fictitious domain

Ù ϕh : approximation of ϕ
Ù Γh = {ϕh = 0} : approximate boundary of Γ
Ù Ωh : computational mesh
Ù ∂Ωh : boundary ofΩh (∂Ωh ̸= Γh)

Remark : nvert will denote the number of vertices in each direction
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Appendix 8 : Facets and Cells sets

Ù T Γ
h : mesh elements cut by Γh

Ù FΓ
h : collects the interior facets of T Γ

h
(either cut by Γh or belonging to a cut mesh element)
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Appendix 8 : Poisson problem
Approach Problem : Find wh ∈ V(k)h such that

ah(wh, vh) = lh(vh) ∀vh ∈ V(k)h

where

ah(w, v) =
∫
Ωh

∇(ϕhw) · ∇(ϕhv)−
∫
∂Ωh

∂

∂n
(ϕhw)ϕhv+ Gh(w, v) ,

lh(v) =
∫
Ωh

fϕhv+ Grhs
h (v) Stabilization terms

and
V(k)h =

{
vh ∈ H1(Ωh) : vh|T ∈ Pk(T), ∀T ∈ Th

}
.

For the non homogeneous case, we replace

u = ϕw → u = ϕw+ g

by supposing that g is currently given over the entireΩh.
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Appendix 8 : Stabilization terms

1st term : ensure continuity of the solution by penalizing gradient jumps.
→ Ghost penalty [Burman, 2010]
2nd term : require the solution to verify the strong form onΩΓ

h .
Purpose :
Ù reduce the errors created by the ”fictitious” boundary
Ù ensure the correct condition number of the finite element matrix
Ù restore the coercivity of the bilinear scheme
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Our hybrid method
Appendix 7 : Description
Appendix 8 : ϕ-FEM Method
Appendix 9 : Results
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Appendix 9 : Problem considered
PDE : Poisson problem with Homogeneous Dirichlet conditions
Find u : Ω→ Rd(d = 1, 2, 3) such that{

−∆u = f, in Ω,

u = 0, on Γ,

with∆ the Laplace operator,Ω a smooth bounded open set and Γ its boundary.
Geometry : Circle - center=(0.5, 0.5) , radius=

√
2/4

Ù Level-set function :

ϕ(x, y) = −1/8 + (x− 1/2)2 + (y− 1/2)2

Ù Exact solution :

uex(x, y) = ϕ(x, y) sin(x) exp(y)
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Appendix 9 : Networks
PINNs : Multi-Layer Perceptron (MLP, Fully connected) with a physical loss

Ù n_layers=4

Ù n_neurons=20 (in each layer)

Ù n_epochs=10000

Ù n_pts=2000 (randomly drawn in the square [0, 1]2)

loss = mse(∆(ϕ(xi, yi)wθ,i)+ fi)

with (xi, yi) ∈ O.
Remark : We impose exact boundary
conditions.

Some important points :
• Need uNN ∈ Pk of high degree (PINNs Ok)
• Need the derivatives to be well learn (PINNs Ok)
• For the correction : Need a correct solution onΩh, not onΩ (training on the square
for the moment).
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Appendix 9 : Training

"We consider a single problem (f fixed) on a single geometry (ϕ fixed).

||uex − uθ||(rel)L2(Ω) ≈ 2.81e− 3
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Appendix 9 : Correction
uθ ∈ P10 → ũ ∈ P1

FEM / ϕ-FEM : nvert ∈ {8, 16, 32, 64, 128}
Corr : nvert ∈ {5, 10, 15, 20, 25, 30}

Remark : Problem with assemble and solve time
+ mesh time forϕ-FEM would be parallelized

•mesh - FEM : construct the mesh
(ϕ-FEM : construct cell/facet sets)
• u_PINNs - get uθ in P10 freedom degrees
• assemble - assemble the FE matrix
• solve - resolve the linear system

Remark : The stabilisation parameter σ of the ϕ-FEM method has a major impact on the error
obtained.
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