

Macaron/Tonus retreat presentation

Mesh-based methods and physically informed learning

Authors:

Frédérique LECOURTIER

Supervisors:

Emmanuel FRANCK

Michel DUPREZ

Vanessa LLERAS

February 6-7, 2024

MIMESIS

Introduction
●○○○

Mesh-based methods (FEM)
○ ○ ○ ○○○○○

Physically Informed Learning
○ ○○○ ○○○○○

Our hybrid method
○○○

Conclusion
○○○○

Introduction

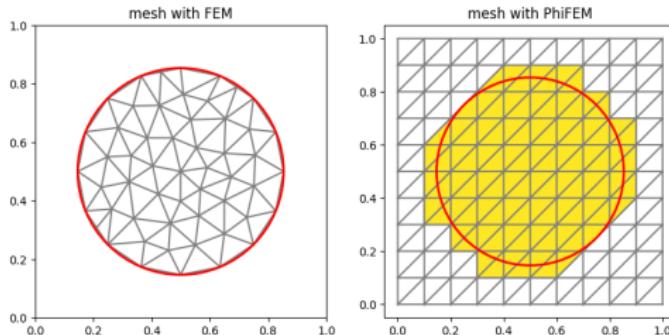
Scientific context

Context : Create real-time digital twins of an organ, described by a levelset function.

→ This levelset function can easily be obtained from medical images.

ϕ -FEM Method : New fictitious domain finite element method.

- domain given by a level-set function ⇒ don't require a mesh fitting the boundary
- allow to work on complex geometries
- ensure geometric quality of the mesh



Practical cases: Real-time simulation, shape optimization...

Neural Network : Obtain a solution quickly.

Problem considered

Elliptic problem with Dirichlet conditions:

Find $u : \Omega \rightarrow \mathbb{R}^d$ ($d = 1, 2, 3$) such that

$$\begin{cases} L(u) = -\nabla \cdot (A(x)\nabla u(x)) + c(x)u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \partial\Omega \end{cases} \quad (1)$$

with A a definite positive coercivity condition and c a scalar. We consider Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

Weak formulation :

Find $u \in V$ such that $a(u, v) = I(v) \forall v \in V$

with

$$a(u, v) = \int_{\Omega} (A(x) \nabla u(x)) \cdot \nabla v(x) + c(x) u(x) v(x) \, dx$$

$$I(v) = \int_{\Omega} f(x) v(x) \, dx$$

Aim of the talk

Objective: Show that the philosophy behind most of the methods is the same.

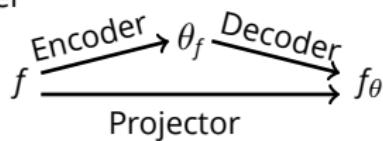
Mesh-based methods // Physically informed learning

Numerical methods : Discretize an infinite-dimensional problem (unknown = function) and solve it in a finite-dimensional space (unknown = vector).

- **Encoding**: we encode the problem in a finite-dimensional space
- **Approximation**: solve the problem in finite-dimensional space
- **Decoding**: bring the solution back into infinite dimensional space

Encoding	Approximation	Decoding
$f \rightarrow \theta_f$	$\theta_f \rightarrow \theta_u$	$\theta_u \rightarrow u_\theta$

Projector: Encoder + Decoder



Mesh-based methods (FEM)

Encoding/Decoding
Approximation

Mesh-based methods (FEM)

Encoding/Decoding
Approximation

Encoding/Decoding - FEMs

- **Decoding**: Linear combination of piecewise polynomial function φ_i .

$$u_\theta(x) = \mathcal{D}(\theta_u)(x) = \sum_{i=1}^N (\theta_u)_i \varphi_i(x)$$

⇒ linear decoding ⇒ approximation space V_N = vectorial space
⇒ existence and uniqueness of the orthogonal projector

- **Encoding**: Optimization process.

$$\theta_f = \mathcal{E}(f) = \operatorname{argmin}_{\theta \in \mathbb{R}^N} \int_{\Omega} ||f_\theta(x) - f(x)||^2 dx$$

↔ Orthogonal projection on vector space $V_N = \text{Vect}\{\varphi_1, \dots, \varphi_N\}$.

$$\theta_f = \mathcal{E}(f) = M^{-1}b(f)$$

with $M_{ij} = \int_{\Omega} \varphi_i(x) \varphi_j(x) dx$ and $b_i(f) = \int_{\Omega} \varphi_i(x) f(x) dx$. Appendix 1

Mesh-based methods (FEM)

Encoding/Decoding

Approximation

Approximation

Idea : Project a certain form of the equation onto the vector space V_N .

We introduce the residual inside Ω and on the boundary $\partial\Omega$ defined by

$$R_{in}(v) = L(v) - f \quad \text{and} \quad R_{bc}(v) = v - g$$

Discretization : Degrees of freedom problem (which also has a unique solution)

$$u = \underset{v \in H_1^0(\Omega)}{\operatorname{argmin}} J(v) \quad \longrightarrow \quad \theta_u = \underset{\theta \in \mathbb{R}^N}{\operatorname{argmin}} J(\theta)$$

with J a functional to minimize.

Variants : Depends on the problem form used for projection.

Symmetric spatial PDE

Problem - Energetic form

Galerkin projection

Any type of PDE

Problem - Least-square form

Galerkin Least-square projection

Energetic form

Discrete Minimization Problem :

$$u_\theta(x) = \operatorname{argmin}_{v \in V_N} J(v), \quad J(v) = J_{in}(v) + J_{bc}(v) \quad (2)$$

with

$$J_{in}(v) = \frac{1}{2} \int_{\Omega} L(v)v - \int_{\Omega} fv \quad \text{and} \quad J_{bc}(v) = \frac{1}{2} \int_{\partial\Omega} R_{bc}(v)^2$$

Remark : This form of the problem is due to the Lax-Milgram theorem as a is symmetrical.

Discrete Minimization Problem (2) \Leftrightarrow PDE (1):

$$\nabla_v J_{in}(v) = R_{in}(v), \quad \nabla_v J_{bc}(v) = R_{bc}(v)$$

Appendix 2

$$u_\theta \text{ sol of (2)} \Leftrightarrow \begin{cases} \nabla_v J_{in}(u_\theta) = 0 \\ \nabla_v J_{bc}(u_\theta) = 0 \end{cases} \Leftrightarrow \begin{cases} R_{in}(u_\theta) = 0 \text{ in } \Omega \\ u_\theta = g \text{ on } \partial\Omega \end{cases} \Leftrightarrow \begin{array}{l} u_\theta \text{ approx} \\ \text{sol of (1)} \end{array}$$

Discrete
min pb

PDE

Galerkin Projection

DoFs minimization Problem :

$$\theta_u = \underset{\theta \in \mathbb{R}^N}{\operatorname{argmin}} J(\theta), \quad J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} L(v_{\theta}) v_{\theta} - \int_{\Omega} f v_{\theta} \quad (3)$$

Remark : Here, we are only interested in the minimisation problem on Ω .

Galerkin projection : Consists in resolving

$$\langle R_{in}(u_{\theta}(x)), \varphi_i \rangle_{L^2} = 0, \quad \forall i \in \{1, \dots, N\} \quad (4)$$

Galerkin Projection (4) \Leftrightarrow PDE (1) :

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} R_{in}(v_{\theta}) \varphi_i \right)_{i=1, \dots, N} \quad \text{Appendix 3}$$

$$\begin{array}{ccccccccc} u_{\theta} \text{ approx} & \Leftrightarrow & u_{\theta} \text{ sol} & \Leftrightarrow & \theta_u \text{ sol} & \Leftrightarrow & \nabla_{\theta} J(\theta) = 0 & \Leftrightarrow & u_{\theta} \text{ sol} \\ \text{sol of (1)} & & \text{of (2)} & & \text{of (3)} & & & & \text{of (4)} \\ \text{PDE} & & \text{Discrete} & & \text{DoFs} & & & & \text{Galerkin} \\ & & \text{min pb} & & \text{min pb} & & & & \text{projection} \end{array}$$

Least-Square form

Discrete Minimization Problem :

$$u_\theta(x) = \operatorname{argmin}_{v \in V_N} J(v), \quad J(v) = J_{in}(v) + J_{bc}(v)$$

with

$$J_{in}(v) = \frac{1}{2} \int_{\Omega} R_{in}(v)^2 \quad \text{and} \quad J_{bc}(v) = \frac{1}{2} \int_{\partial\Omega} R_{bc}(v)^2$$

DoFs minimization Problem :

$$\theta_u = \operatorname{argmin}_{\theta \in \mathbb{R}^N} J(\theta), \quad J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} (L(v_\theta) - f)^2$$

Least-Square Galerkin projection :

Consists in resolving

$$\langle R_{in}(u_\theta(x)), (\nabla_\theta R_{in}(u_\theta(x)))_i \rangle_{L^2} = 0, \quad \forall i \in \{1, \dots, N\}$$

Steps Decomposition - FEMs

Encoding	Approximation		Decoding
$f \rightarrow \theta_f$	$\theta_f \rightarrow \theta_u$		$\theta_u \rightarrow u_\theta$
$\theta_f = \mathcal{E}(f)$ $= M^{-1}b(f)$	Galerkin $\langle R(u_\theta), \varphi_i \rangle_{L^2} = 0$	LS Galerkin $\langle R(u_\theta), (\nabla_\theta R(u_\theta))_i \rangle_{L^2} = 0$	$u_\theta(x) = \mathcal{D}(\theta_u)(x)$
	$A\theta_u = B$		$= \sum_{i=1}^N (\theta_u)_i \varphi_i$

Example : Galerkin projection.

For $i \in \{1, \dots, N\}$,

$$\begin{aligned}
 & \langle R(u_\theta), \varphi_i \rangle_{L^2} = 0 \\
 \iff & \int_{\Omega} L(u_\theta) \varphi_i = \int_{\Omega} f \varphi_i \\
 \iff & \sum_{j=1}^N (\theta_u)_j \int_{\Omega} \varphi_i L(\varphi_j) = \int_{\Omega} f \varphi_i
 \end{aligned}
 \quad
 \begin{aligned}
 A\theta_u &= B \text{ with} \\
 A_{i,j} &= \int_{\Omega} \varphi_i L(\varphi_j) \quad , \quad B_i = \int_{\Omega} f \varphi_i
 \end{aligned}$$

Introduction
○○○○

Mesh-based methods (FEM)
○ ○ ○ ○○○○○

Physically Informed Learning
● ○○○ ○○○○○

Our hybrid method
○○○

Conclusion
○○○○

Physically Informed Learning

Encoding/Decoding
Approximation

Introduction
○○○○

Mesh-based methods (FEM)
○ ○ ○○○○○

Physically Informed Learning
○ ●○○ ○○○○○

Our hybrid method
○○○

Conclusion
○○○○

Physically Informed Learning

Encoding/Decoding
Approximation

Encoding/Decoding - NNs

- **Decoding**: Implicit neural representation.

$$u_{\theta}(x) = \mathcal{D}(\theta_u)(x) = u_{NN}(x)$$

with u_{NN} a neural network (for example a MLP).

⇒ non-linear decoding ⇒ approximation space \mathcal{M}_N = finite-dimensional manifold
 ⇒ there is no unique projector

- **Encoding**: Optimization process.

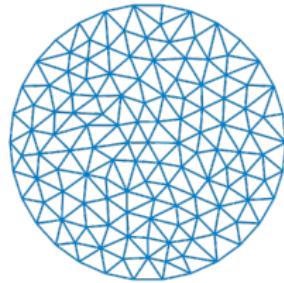
$$\theta_f = \mathcal{E}(f) = \operatorname{argmin}_{\theta \in \mathbb{R}^N} \int_{\Omega} ||f_{\theta}(x) - f(x)||^2 dx$$

Neural Network Decoder

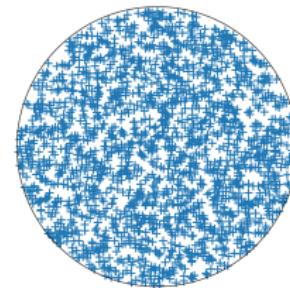
Advantages of a non-linear decoder :

- We gain in the richness of the approximation
- We can hope to significantly reduce the number of degrees of freedom
- This avoids the need to use meshes.

polynomial models
⇒ use meshes



NN models
⇒ no need to use meshes



Introduction
○○○○

Mesh-based methods (FEM)
○ ○ ○ ○○○○○

Physically Informed Learning
○ ○○○ ●○○○○

Our hybrid method
○○○

Conclusion
○○○○

Physically Informed Learning

Encoding/Decoding
Approximation

Approximation

Idea : Project a certain form of the equation onto the manyfold \mathcal{M}_N .

Discretization : Degrees of freedom problem (no mesh).

$$u = \underset{v \in H_1^0(\Omega)}{\operatorname{argmin}} J(v) \quad \longrightarrow \quad \theta_u = \underset{\theta \in \mathbb{R}^N}{\operatorname{argmin}} J(\theta)$$

with J a functional to minimize.

Variants : Depends on the problem form used for projection.

Symmetric spatial PDE

Problem - Energetic form
Deep-Ritz
(Galerkin projection)

Any type of PDE

Problem - Least-square form
Standard PINNs
(Galerkin Least-square projection)

Deep-Ritz

DoFs Minimization Problem : Considering the energetic form of our PDE, our discrete problem is

$$\theta_u = \underset{\theta \in \mathbb{R}^N}{\operatorname{argmin}} \alpha J_{in}(\theta) + \beta J_{bc}(\theta) \quad (5)$$

with

$$J_{in}(\theta) = \frac{1}{2} \int_{\Omega} L(v_{\theta}) v_{\theta} - \int_{\Omega} f v_{\theta} \quad \text{and} \quad J_{bc}(\theta) = \frac{1}{2} \int_{\partial\Omega} (v_{\theta} - g)^2$$

Monte-Carlo method : Discretize the cost function by random process.

- (x_1, \dots, x_n) randomly drawn on Ω

$$J_{in}(\theta) = \frac{1}{2n} \sum_{i=1}^n L(v_{\theta}(x_i)) v_{\theta}(x_i) - \frac{1}{n} \sum_{i=1}^n f(x_i) v_{\theta}(x_i)$$

- (y_1, \dots, y_{n_b}) randomly drawn on $\partial\Omega$

$$J_{bc}(\theta) = \frac{1}{2n_b} \sum_{i=1}^{n_b} (v_{\theta}(y_i) - g(y_i))^2$$

Remark : → Two different random generation processes (to have enough boundary points)
 → Weights α and β still need to be determined

Standard PINNs

DoFs Minimization Problem : Considering the least-square form of our PDE, our discrete problem is

$$\theta_u = \underset{\theta \in \mathbb{R}^N}{\operatorname{argmin}} \alpha J_{in}(\theta) + \beta J_{bc}(\theta) \quad (6)$$

with

$$J_{in}(\theta) = \frac{1}{2} \int_{\Omega} (L(v_{\theta}) - f)^2 \quad \text{and} \quad J_{bc}(\theta) = \frac{1}{2} \int_{\partial\Omega} (v_{\theta} - g)^2$$

Monte-Carlo method : Discretize the cost function by random process.

Steps Decomposition - NNs

Encoding	Approximation		Decoding
Mesh-based Methods			
$\theta_f = \mathcal{E}(f)$ $= M^{-1}b(f)$	Galerkin $\langle R(u_\theta), \varphi_i \rangle = 0$	LS Galerkin $\langle R(u_\theta), (\nabla_\theta R(u_\theta))_i \rangle = 0$	$u_\theta(x) = \mathcal{D}(\theta_u)(x)$ $= \sum_{i=1}^N (\theta_u)_i \varphi_i$
	$A\theta_u = B$		
Physically informed learning			
$\theta_f = \min_{\theta \in \mathbb{R}^N} \int_{\Omega} f_\theta - f ^2$	Deep-Ritz Energetic Form	Standard PINNs LS Form	$u_\theta(x) = u_{NN}(x)$
	$\theta_u = \operatorname{argmin}_{\theta \in \mathbb{R}^N} J(\theta)$		

Connection : Mesh-Based Methods // Physically Informed Learning

Introduction
○○○○

Mesh-based methods (FEM)
○ ○ ○○○○○

Physically Informed Learning
○ ○○○ ○○○○○

Our hybrid method
●○○

Conclusion
○○○○

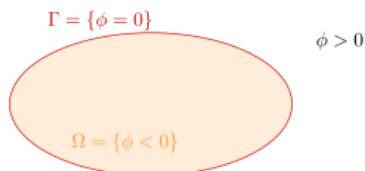
Our hybrid method

ϕ -FEM Method

Main ideas :

Appendix 8

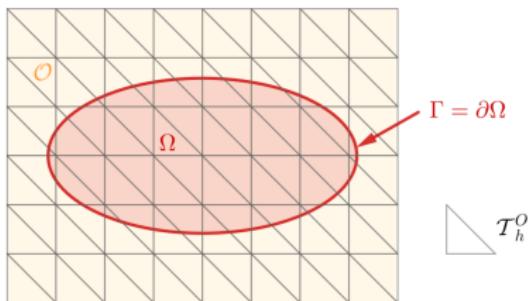
- Domain defined by a LevelSet Function ϕ .



- We are looking for w such that $u = \phi w + g$.
Thus, the decoder is written as

$$u_\theta(x) = \mathcal{D}_{\theta_w}(x) = \phi(x) \sum_{i=1}^N (\theta_w)_i \varphi_i + g(x)$$

- Mesh of a fictitious domain containing Ω .



Impose exact BC in PINNs

Considering the least squares form of our PDE, we impose the exact boundary conditions by writing our solution as

$$u_\theta = \phi w_\theta + g$$

where w_θ is our decoder (defined by a neural network such as an MLP).

We then consider the same minimization problem by removing the cost function associated with the boundary

$$\theta_u = \operatorname*{argmin}_{\theta \in \mathbb{R}^N} J_{in}(\theta) + \cancel{J_{bc}(\theta)}$$

with

$$J_{in}(\theta) = \frac{1}{2} \int_{\Omega} (L(\phi w_{\theta} + g) - f)^2 \quad \text{and} \quad J_{bc}(\theta) = \frac{1}{2} \int_{\partial\Omega} (v_{\theta} - g)^2$$

Connection : ϕ -FEM // Exact BC in PINNs

Introduction
○○○○

Mesh-based methods (FEM)
○ ○ ○○○○○

Physically Informed Learning
○ ○○ ○○○○○

Our hybrid method
○○○

Conclusion
●○○○

Conclusion

Conclusion

What has been seen ?

- "Physical Informed Learning" = extension of classic numerical methods
→ where decoder belongs to a manifold
- advantage in high dimensions (parametric PDEs)
- advantage in the context of complex geometries (mesh-free methods)

Our hybrid approach : Appendix 7

- It combines
 - Speed of neural networks in predicting a solution
 - Precision of FEM methods to correct and certify the prediction of the NN
(which can be completely wrong, on an unknown dataset for example)
- Encouraging results on simple geometries Appendix 9
- Difficulties on complex geometries - Important that its derivatives don't explode →
Next step: learning levelset functions (Eikonal equation)

Introduction
○○○○

Mesh-based methods (FEM)
○ ○ ○○○○○

Physically Informed Learning
○ ○○○ ○○○○○

Our hybrid method
○○○

Conclusion
○○●○

Thank you !

MIMESIS

Bibliography

- [1] Erik Burman. Ghost penalty. *Comptes Rendus. Mathématique*.
- [2] Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, and André Massing. CutFEM: Discretizing geometry and partial differential equations. *International Journal for Numerical Methods in Engineering*.
- [3] Stéphane Cotin, Michel Duprez, Vanessa Lleras, Alexei Lozinski, and Killian Vuillemot. ϕ -FEM: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer.
- [4] Michel Duprez, Vanessa Lleras, and Alexei Lozinski. *A new ϕ -FEM approach for problems with natural boundary conditions*. 2020.
- [5] Michel Duprez, Vanessa Lleras, and Alexei Lozinski. ϕ -FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations. *ESAIM: Mathematical Modelling and Numerical Analysis*.
- [6] Michel Duprez and Alexei Lozinski. ϕ -FEM: A Finite Element Method on Domains Defined by Level-Sets. *SIAM Journal on Numerical Analysis*.
- [7] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. *Implicit Neural Representations with Periodic Activation Functions*. 2020.
- [8] N. Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. *Computer Methods in Applied Mechanics and Engineering*.

Mesh-based methods

Physically-Informed Learning

Our hybrid method

Mesh-based methods

Appendix 1 : Encoding - FEMs

We want to project f onto the vector subspace V_N so that $f_\theta = p_{V_N}(f)$ then $\forall i \in \{1, \dots, N\}$, we have

$$\begin{aligned}
 & \langle f_\theta - f, \varphi_i \rangle = 0 \\
 \iff & \langle f_\theta, \varphi_i \rangle = \langle f, \varphi_i \rangle \\
 \iff & \sum_{j=1}^N (\theta_f)_j \langle \varphi_j, \varphi_i \rangle = \langle f, \varphi_i \rangle \\
 \iff & M\theta_f = b(f) \\
 \iff & \theta_f = M^{-1}b(f)
 \end{aligned}$$

with

$$M_{ij} = \langle \varphi_i, \varphi_j \rangle = \int_{\Omega} \varphi_i(x) \varphi_j(x) \, dx$$

$$b_i(f) = \langle f, \varphi_i \rangle = \int_{\Omega} f(x) \varphi_i(x) \, dx$$

Appendix 2 : Energetic form I

Let's compute the gradient of J with respect to v with

$$J(v) = J_{in}(v) + J_{bc}(v) = \left(\frac{1}{2} \int_{\Omega} L(v)v - \int_{\Omega} fv \right) + \left(\frac{1}{2} \int_{\partial\Omega} R_{bc}(v)^2 \right)$$

- First, let's calculate the differential of J_{in} with respect to v .

$$J_{in}(v + \epsilon h) = \frac{1}{2} \int_{\Omega} (A \nabla (v + \epsilon h)) \cdot \nabla (v + \epsilon h) + c(v + \epsilon h)^2 - \int_{\Omega} f(v + \epsilon h)$$

By bilinearity of the scalar product and by symmetry of A , we finally obtain

$$\mathcal{D}J_{in}(v) \cdot h = \lim_{\epsilon \rightarrow 0} \frac{J_{in}(v + \epsilon h) - J_{in}(v)}{\epsilon} = \int_{\Omega} (-\nabla \cdot (A \nabla v) + cv - f)h$$

And thus

$$\nabla_v J_{in}(v) = L(v) - f = R_{in}(v)$$

Appendix 2 : Energetic form II

- In the same way, we can compute the differential of J_{bc} with respect to v .

$$J_{bc}(v + \epsilon h) = \frac{1}{2} \int_{\partial\Omega} v^2 + 2\epsilon vh + \epsilon^2 h^2 - 2vg - 2\epsilon hg + g^2$$

Then

$$\mathcal{D}J_{bc}(v) \cdot h = \lim_{\epsilon \rightarrow 0} \frac{J_{bc}(v + \epsilon h) - J_{bc}(v)}{\epsilon} = \int_{\partial\Omega} (v - g)h$$

And thus

$$\nabla_v J_{bc}(v) = (v - g) = R_{bc}(v)$$

Finally

$$\nabla_v J(v) = \nabla_v J_i(v) + \nabla_v J_{bc}(v) = R(v)$$

Appendix 3 : Galerkin Projection

Let's compute the gradient of J with respect to θ with

$$J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} L(u_{\theta}) v_{\theta} - \int_{\Omega} f v_{\theta}$$

First, we define

$$v_{\theta} = \sum_{i=1}^N \theta_i \varphi_i = \theta \cdot \varphi \quad \text{and} \quad v_{\theta+\epsilon h} = (\theta + \epsilon h) \cdot \varphi = v_{\theta} + \epsilon v_h$$

Then since A is symmetric

$$\mathcal{D}J(\theta) \cdot h = \int_{\Omega} R(v_{\theta}) v_h = \sum_{i=1}^N h_i \int_{\Omega} R(v_{\theta}) \varphi_i$$

Finally

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} R(v_{\theta}) \varphi_i \right)_{i=1, \dots, N}$$

Appendix 4 : Least-Square form I

Let's compute the gradient of J with respect to v with

$$J(v) = J_{in}(v) + J_{bc}(v) = \left(\frac{1}{2} \int_{\Omega} R_{in}(v)^2 \right) + \left(\frac{1}{2} \int_{\partial\Omega} R_{bc}(v)^2 \right)$$

- First, let's calculate the differential of J_{in} with respect to v .

$$\begin{aligned} \mathcal{D}J_{in}(v) \cdot h &= \langle \nabla \cdot (A \nabla h), \nabla \cdot (A \nabla v) - cv + f \rangle + \langle ch, -\nabla \cdot (A \nabla v) + cv - f \rangle \\ &= -\langle \nabla \cdot (A \nabla h), R_{in}(v) \rangle + \langle ch, R_{in}(v) \rangle \\ &= \langle -\nabla \cdot (A \nabla R_{in}(v)) + cR_{in}(v), h \rangle \\ &= \langle L(R_{in}(v)), h \rangle \end{aligned}$$

And thus

$$\nabla_v J_{in}(v) = L(R_{in}(v))$$

Appendix 4 : Least-Square form II

- In the same way, we can compute the differential of J_{bc} with respect to v .

$$J_{bc}(v + \epsilon h) = \frac{1}{2} \int_{\partial\Omega} v^2 + 2\epsilon vh + \epsilon^2 h^2 - 2vg - 2\epsilon hg + g^2$$

Then

$$\mathcal{D}J_{bc}(v) \cdot h = \lim_{\epsilon \rightarrow 0} \frac{J_{bc}(v + \epsilon h) - J_{bc}(v)}{\epsilon} = \int_{\partial\Omega} (v - g)h$$

And thus

$$\nabla_v J_{bc}(v) = (v - g) = R_{bc}(v)$$

Finally

$$\nabla_v J(v) = L(R(v))\mathbf{1}_\Omega + (v - g)\mathbf{1}_{\partial\Omega}$$

Appendix 5 : LS Galerkin Projection

Let's compute the gradient of J with respect to θ with

$$J(\theta) = J_{in}(\theta) = \frac{1}{2} \int_{\Omega} (L(u_{\theta}) - f)^2$$

First, we define

$$v_{\theta} = \sum_{i=1}^N \theta_i \varphi_i = \theta \cdot \varphi \quad \text{and} \quad v_{\theta+\epsilon h} = (\theta + \epsilon h) \cdot \varphi = v_{\theta} + \epsilon v_h$$

Then since A is symmetric

$$\mathcal{D}J(\theta) \cdot h = \int_{\Omega} L(R(v_{\theta})) v_h = \sum_{i=1}^N h_i \int_{\Omega} L(R(v_{\theta})) \varphi_i$$

Finally

$$\nabla_{\theta} J(\theta) = \left(\int_{\Omega} L(R(v_{\theta})) \varphi_i \right)_{i=1, \dots, N}$$

Mesh-based methods
○○○○○○○

Physically-Informed Learning
●○

Our hybrid method
○ ○○ ○○○○○ ○○○○

Physically-Informed Learning

MIMESIS

Appendix 6 : ADAM Method

ADAM = "Adaptive Moment Estimation" - Combine the idea of Moment and RMSProp.

$$\begin{aligned} 1 : \quad m &\leftarrow \frac{\beta_1 m + (1 - \beta_1) \nabla f_x}{1 - \beta_1^T} \\ 2 : \quad s &\leftarrow \frac{\beta_2 s + (1 - \beta_2) \nabla^2 f_x}{1 - \beta_2^T} \\ 3 : \quad x &\leftarrow x - \ell \frac{m}{\sqrt{s + \epsilon}} \end{aligned}$$

with

- T the number of iteration (starting at 1)
- ϵ a smoothing parameter
- $\beta_i \in]0, 1[$ which converge quickly to 0.

Mesh-based methods
oooooooo

Physically-Informed Learning
oo

Our hybrid method
● ooo oooooo ooooo

Our hybrid method

Appendix 7 : Description

Appendix 8 : ϕ -FEM Method

Appendix 9 : Results

Mesh-based methods
○○○○○○○

Physically-Informed Learning
○○

Our hybrid method
○ ●○○ ○○○○○○ ○○○○

Our hybrid method

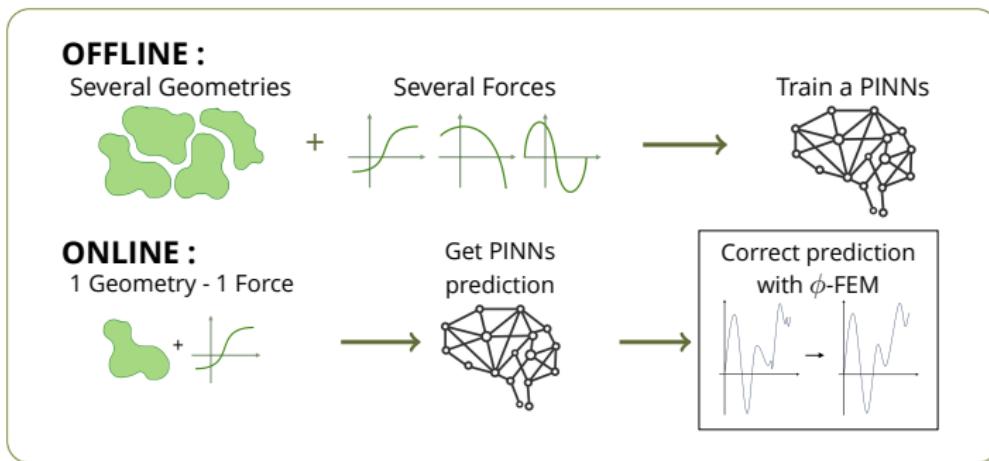
Appendix 7 : Description

Appendix 8 : ϕ -FEM Method

Appendix 9 : Results

Appendix 7 : Objective

Current Objective : Develop hybrid finite element / neural network methods.

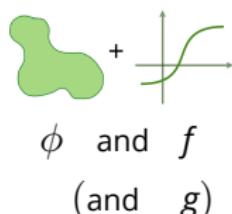


On going work :

- Geometry : 2D, simple, fixed (as circle, ellipse..) → 3D / complex / variable
- PDE : simple, static (Poisson problem) → complex / dynamic (elasticity, hyper-elasticity)
- Neural Network : simple and defined everywhere (PINNs) → Neural Operator

Appendix 7 : Correction

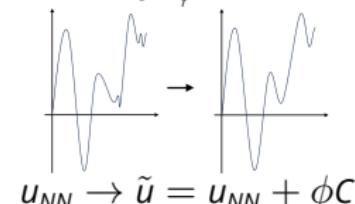
1 Geometry - 1 Force



Get PINNs
prediction

$$u_{NN} = \phi w_{NN} + g$$

Correct prediction
with ϕ -FEM



Correct by adding : Considering u_{NN} as the prediction of our PINNs (trained to learn the solution of the elliptic problem), the correction problem consists in writing the solution as

$$\tilde{u} = u_{NN} + \boxed{\tilde{C}}$$

and searching $\tilde{C} : \Omega \rightarrow \mathbb{R}^d$ such that

$$\begin{cases} L(\tilde{C}) = \tilde{f}, & \text{in } \Omega, \\ \tilde{C} = 0, & \text{on } \Gamma, \end{cases}$$

with $\tilde{f} = f - L(u_{NN})$ and $\tilde{C} = \phi C$ for the ϕ -FEM method.

Mesh-based methods
○○○○○○○

Physically-Informed Learning
○○

Our hybrid method
○ ○○ ○ ●○○○○ ○○○○

Our hybrid method

Appendix 7 : Description

Appendix 8 : ϕ -FEM Method

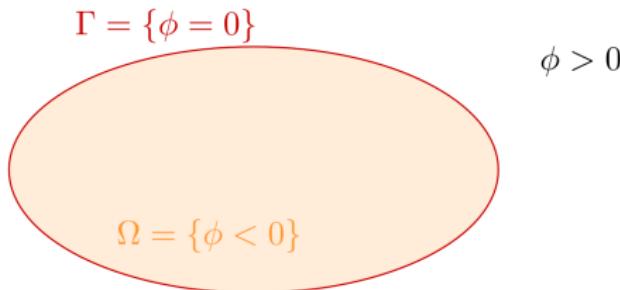
Appendix 9 : Results

Appendix 8 : Problem

Let $u = \phi w + g$ such that

$$\begin{cases} -\Delta u = f, \text{ in } \Omega, \\ u = g, \text{ on } \Gamma, \end{cases}$$

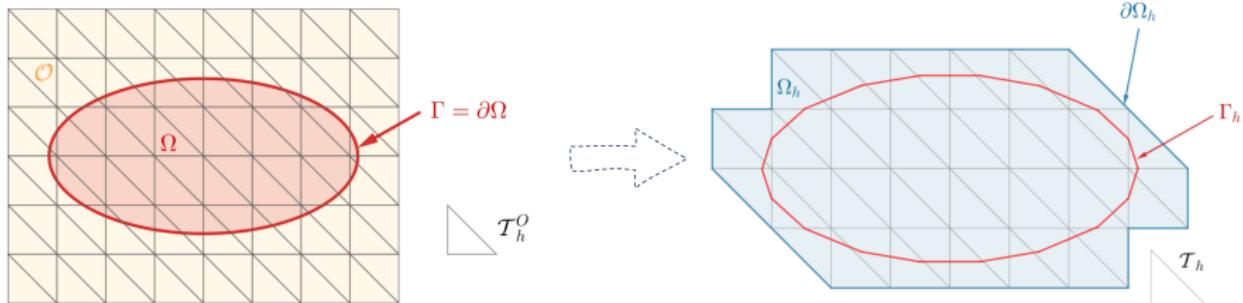
where ϕ is the level-set function and Ω and Γ are given by :



The level-set function ϕ is supposed to be known on \mathbb{R}^d and sufficiently smooth. For instance, the signed distance to Γ is a good candidate.

Remark : Thanks to ϕ and g , the boundary conditions are respected.

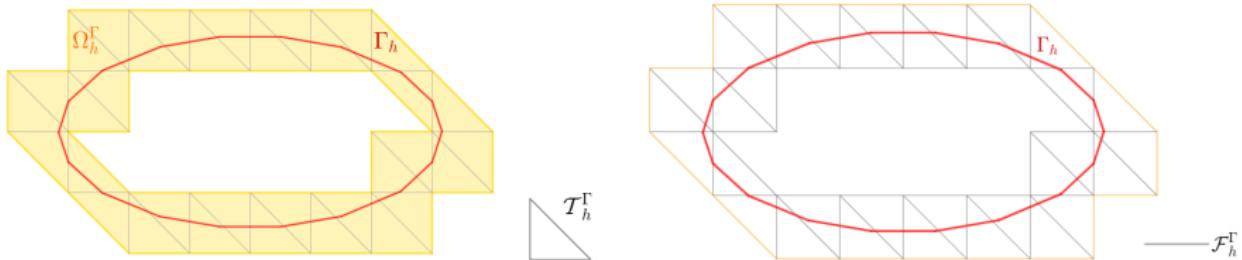
Appendix 8 : Fictitious domain



- ϕ_h : approximation of ϕ
- $\Gamma_h = \{\phi_h = 0\}$: approximate boundary of Γ
- Ω_h : computational mesh
- $\partial\Omega_h$: boundary of Ω_h ($\partial\Omega_h \neq \Gamma_h$)

Remark : n_{vert} will denote the number of vertices in each direction

Appendix 8 : Facets and Cells sets



- \mathcal{T}_h^Γ : mesh elements cut by Γ_h
- \mathcal{F}_h^Γ : collects the interior facets of \mathcal{T}_h^Γ
(either cut by Γ_h or belonging to a cut mesh element)

Appendix 8 : Poisson problem

Approach Problem : Find $w_h \in V_h^{(k)}$ such that

$$a_h(w_h, v_h) = I_h(v_h) \quad \forall v_h \in V_h^{(k)}$$

where

$$a_h(w, v) = \int_{\Omega_h} \nabla(\phi_h w) \cdot \nabla(\phi_h v) - \int_{\partial\Omega_h} \frac{\partial}{\partial n}(\phi_h w) \phi_h v + \boxed{G_h(w, v)},$$

$$I_h(v) = \int_{\Omega_h} f \phi_h v + \boxed{G_h^{rhs}(v)} \quad \text{Stabilization terms}$$

and

$$V_h^{(k)} = \{v_h \in H^1(\Omega_h) : v_h|_T \in \mathbb{P}_k(T), \forall T \in \mathcal{T}_h\}.$$

For the non homogeneous case, we replace

$$u = \phi w \quad \rightarrow \quad u = \phi w + g$$

by supposing that g is currently given over the entire Ω_h .

Appendix 8 : Stabilization terms

$$G_h(w, v) = \sigma h \sum_{E \in \mathcal{F}_h^\Gamma} \int_E \left[\frac{\partial}{\partial n} (\phi_h w) \right] \left[\frac{\partial}{\partial n} (\phi_h v) \right] + \sigma h^2 \sum_{T \in \mathcal{T}_h^\Gamma} \int_T \Delta(\phi_h w) \Delta(\phi_h v)$$

Independent parameter of h Jump on the interface E

1st order term

$$G_h^{rhs}(v) = -\sigma h^2 \sum_{T \in \mathcal{T}_h^\Gamma} f \Delta(\phi_h v) - \sigma h^2 \sum_{T \in \mathcal{T}_h^\Gamma} (\Delta(\phi_h w) + f) \Delta(\phi_h v)$$

- **2nd order term**

1st term : ensure continuity of the solution by penalizing gradient jumps.

→ Ghost penalty [Burman, 2010]

2nd term : require the solution to verify the strong form on Ω_h^Γ .

Purpose :

- reduce the errors created by the "fictitious" boundary
- ensure the correct condition number of the finite element matrix
- restore the coercivity of the bilinear scheme

Mesh-based methods
○○○○○○○

Physically-Informed Learning
○○

Our hybrid method
○ ○○ ○○○○○ ●○○○

Our hybrid method

Appendix 7 : Description

Appendix 8 : ϕ -FEM Method

Appendix 9 : Results

Appendix 9 : Problem considered

PDE : Poisson problem with Homogeneous Dirichlet conditions

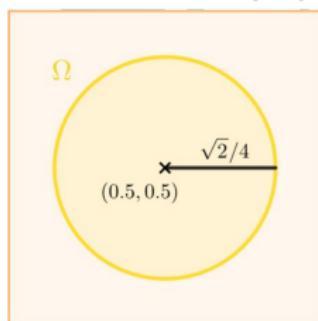
Find $u : \Omega \rightarrow \mathbb{R}^d (d = 1, 2, 3)$ such that

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma, \end{cases}$$

with Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

Geometry : Circle - center = $(0.5, 0.5)$, radius = $\sqrt{2}/4$

$$\mathcal{O} = [0, 1]^2$$



→ **Level-set function :**

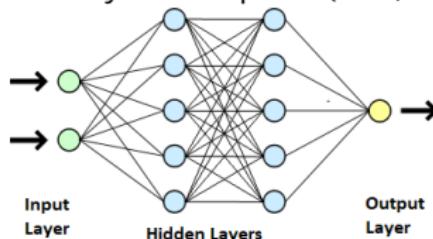
$$\phi(x, y) = -1/8 + (x - 1/2)^2 + (y - 1/2)^2$$

→ **Exact solution :**

$$u_{ex}(x, y) = \phi(x, y) \sin(x) \exp(y)$$

Appendix 9 : Networks

PINNs : Multi-Layer Perceptron (MLP, Fully connected) with a physical loss



- `n_layers=4`
- `n_neurons=20` (in each layer)
- `n_epochs=10000`
- `n_pts=2000` (randomly drawn in the square $[0, 1]^2$)

Some important points :

- Need $u_{NN} \in \mathbb{P}^k$ of high degree (PINNs Ok)
- Need the derivatives to be well learn (PINNs Ok)
- For the correction : Need a correct solution on Ω_h , not on Ω (training on the square for the moment).

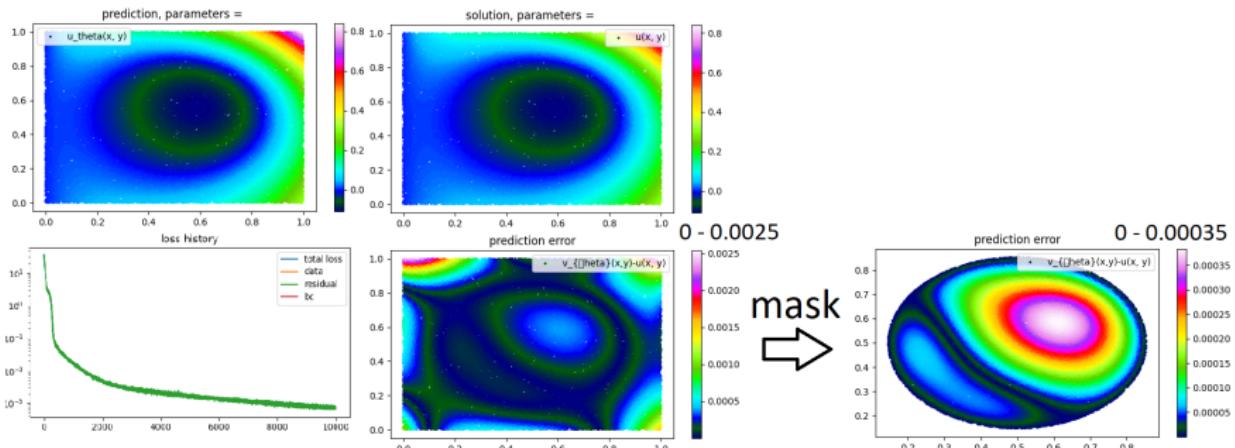
$$\text{loss} = \text{mse}(\Delta(\phi(x_i, y_i)w_{\theta,i}) + f_i)$$

$\text{inputs} = \{(x_i, y_i)\}$
 $\text{outputs} = \{u_i\}$
 $u_i = \phi(x_i, y_i)w_{\theta,i}(x_i, y_i)$
 $i = 1, \dots, n_{\text{pts}}$

with $(x_i, y_i) \in \mathcal{O}$.

Remark : We impose exact boundary conditions.

Appendix 9 : Training

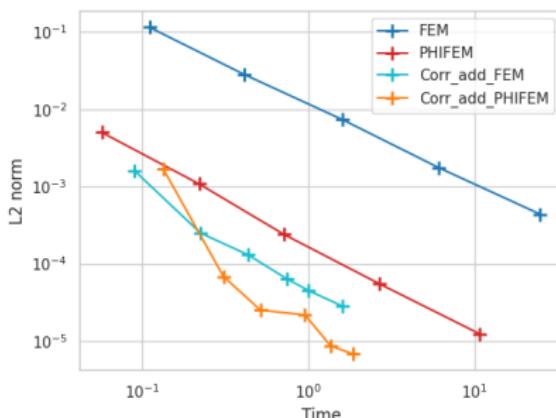


⚠ We consider a single problem (f fixed) on a single geometry (ϕ fixed).

$$\|u_{ex} - u_{\theta}\|_{L^2(\Omega)}^{(rel)} \approx 2.81e-3$$

Appendix 9 : Correction

$$u_\theta \in \mathbb{P}^{10} \rightarrow \tilde{u} \in \mathbb{P}^1$$



FEM / ϕ -FEM : $n_{vert} \in \{8, 16, 32, 64, 128\}$

Corr : $n_{vert} \in \{5, 10, 15, 20, 25, 30\}$

Remark : The stabilisation parameter σ of the ϕ -FEM method has a major impact on the error obtained.

Calculation time (to reach an error of 1e-4)

	mesh	u_PINNs	assemble	solve	TOTAL
FEM	0,08832		29,55516	0,07272	29,71621
PhiFEM	0,33222		1,86924	0,00391	2,20537
Corr_add_FEM	0,00183	0,11187	0,46195	0,00061	0,57626
Corr_add_PhiFEM	0,03213	0,05351	0,22006	0,00040	0,30609

Remark : Problem with assemble and solve time

+ mesh time for ϕ -FEM would be parallelized

- **mesh** - FEM : construct the mesh
(ϕ -FEM : construct cell/facet sets)
- **u_PINNs** - get u_θ in \mathbb{P}^{10} freedom degrees
- **assemble** - assemble the FE matrix
- **solve** - resolve the linear system