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Scientific context

Context : Create real-time digital twins of an organ, described by a levelset function.
— This levelset function can easily be obtained from medical images.

¢-FEM Method : New fictitious domain finite element method.

=> domain given by a level-set function = don't require a mesh fitting the boundary
=> allow to work on complex geometries

=> ensure geometric quality of the mesh

mesh with FEM mesh with PhiFEM

Practical cases: Real-time simulation, shape optimization...
Neural Network : Obtain a solution quickly.
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Problem considered
Elliptic problem with Dirichlet conditions :
Findu : Q — RY(d = 1,2, 3) such that
L(u) ==V - (A(x)Vu(x)) + c(x)u(x) = f(x) in g,
u(x) = g(x) onof2
with A a definite positive coercivity condition and c a scalar. We consider A the

Laplace operator, €2 a smooth bounded open set and I its boundary.
Weak formulation :

(M

Find u € Vsuch thata(u,v) = I(v)Vv € V
with

a(u,v) = /Q(A(X)Vu(x)) - Vv(x) + c(x)u(x)v(x) dx
I(v) = /Q Fx)v(x) dx

2118 MIM=SIS
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Aim of the talk

Objective : Show that the philosophy behind most of the methods is the same.
Mesh-based methods // Physically informed learning

Numerical methods : Discretize an infinite-dimensional problem (unknown =
function) and solve it in a finite-dimensional space (unknown = vector).

+ Encoding : we encode the problem in a finite-dimensional space

+ Approximation : solve the problem in finite-dimensional space

+ Decoding: bring the solution back into infinite dimensional space

Encoding | Approximation | Decoding
f—0 O — 0, 0, — ug

Projector : Encoder + Decoder

de, p Dec,
£nco f Oder
f / \ fe

(S
?

Projector
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Encoding/Decoding - FEMs

+ Decoding: Linear combination of piecewise polynomial function ¢;.

N

ug(x) = D(6.) () = Y _(6u)ipi(x)

i=1

= linear decoding = approximation space Vjy = vectorial space
=> existence and uniqueness of the orthogonal projector
* Encoding : Optimization process.

0y = £(f) = argmin | [|fp(x) — f(x)|[*dx
9erY  Jo

< Orthogonal projection on vector space Vy = Vect{¢1, ..., ¢n}-
O =E(f) = M~"b(f)
with My = [¢, @i(x);(x) and bi(f) = [, @i(x)f(x).

Conclusion
0000

ans MIM:=SIS



Introduction Mesh-based methods (FEM) Physically Informed Learning Our hybrid method Conclusion
0000 O OO 00000 O 000 00000 000

Mesh-based methods (FEM)

Approximation

MIM=SIS



Introduction Mesh-based methods (FEM) Physically Informed Learning our hybrid method
0000 O 00 0@0000 O 000 00000 000

Approximation

Idea : Project a certain form of the equation onto the vector space Vy.
We introduce the residual inside €2 and on the boundary 0 defined by

Rn(v)=L(v)—f and Ry(v)=v—g

Discretization : Degrees of freedom problem (which also has a unique solution)

u=argminj/(v) — 6, = argmin/(0)
vEH? () OERN

with J a functional to minimize.

Variants : Depends on the problem form used for projection.

Symmetric spatial PDE Any type of PDE
Problem - Energetic form Problem - Least-square form
Galerkin projection Galerkin Least-square projection

Conclusion
0000
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Energetic form
Discrete Minimization Problem :

up(x) = argminj(v),  J(v) = Jin(v) + Jpc(v)

VEVN

Jin(v) = %/QL(V)V—/Q]‘V and  Jp(v) = ;/BQ Rbc(v)2

(2)
with

Remark : This form of the problem is due to the Lax-Milgram theorem as a is symmetrical.

Discrete Minimization Problem (2) < PDE (1) :
vvjin(V) = Rin(V) 3 vvjbc(V) = Rbc(V)

ugsol {V.,j,-,,(ue) i(()) N {an(ue) =0inQ

N Ug approx
of (2) Vv Joc(ue) ug = g on 9N solof (1)
Discrete

. PDE
min pb

6/18 MIM=SIS



Introduction Mesh-based methods (FEM) Physically Informed Learning our hybrid method Conclusion
0000 O 00 000800 O 000 00000 000 0000

Galerkin Projection

DoFs minimization Problem :

. 1
6, = argmin J(0), J(0) = Jin(0) = 3 /Q L(vg)vg — /vae (3)

OERN

Remark : Here, we are only interested in the minimisation problem on €2.
Galerkin projection : Consists in resolving

(Rin(ug(x)), i)z = 0, Vie{l,...,N} (4)

Galerkin Projection (4) < PDE (1) :
Vo J(0) = ([ Rf"("e)“"f)1:1,...,/v

Up approx ug sol 0, sol _ ug sol
solof (1) < of () of3 & Ve (0) =0 & (4)
Discrete DoFs Galerkin
PDE . . .
min pb min pb projection

7118 MIM=SIS
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Least-Square form
Discrete Minimization Problem :

up(x) = argminj(v),  J(v) = Jin(v) + Jbc(v)

veVy
with ! 1
1) =5 [P e )= [ lo?
2 Jo 2 Jaq
DoFs minimization Problem :
. 1
6, = argmin/(9), J(0) = Jin(0) = 3 / (L(vp) —f)2
HERV Q

Least-Square Galerkin projection : Consists in resolving

(Rin(ua(x)), (VoRn(ug(x)))i)2 =0, Vi€ {l,...,N}

8118 MIM=SIS
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Steps Decomposition - FEMs

Encoding Approximation Decoding
f—0 O — 0, 0, — ug
Galerkin LS Galerkin ug(x) = D(0,)(x)
=£&(f) N
— mlb(p) (R(ug), i)z = 0 | (R(ug), (VoR(ug))i)i2 =0 =3 )
Ab, = B -

Example : Galerkin projection.
Forie {1,..., N},

)iz =0

<— /L(ug i = /fgo,

- /;wu) / () = / fo

9/18
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Encoding/Decoding - NNs

Conclusion
000 0000

+ Decoding : Implicit neural representation.

ug(x) = D(6,)(x) = um(x)

with uyy a neural network (for example a MLP).

= non-linear decoding = approximation space M, = finite-dimensional manyfold
= there is no unique projector

* Encoding: Optimization process.

=£(f) _argmln/ |Ifo (x) — f(x)||?dx

1018 MIM=SIS
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Neural Network Decoder

Advantages of a non-linear decoder :
+ We gain in the richness of the approximation

+ We can hope to significantly reduce the number of degrees of freedom

 This avoids the need to use meshes.

polynomial models NN models
= use meshes = no need to use meshes

1118 MIM:=SIS
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Approximation
Idea : Project a certain form of the equation onto the manyfold M.

Discretization : Degrees of freedom problem (no mesh).

u=argminj(v) — 6, = argminj(d)
vEH? () OeRN

with / a functional to minimize.

Variants : Depends on the problem form used for projection.

Symmetric spatial PDE Any type of PDE
Problem - Energetic form Problem - Least-square form
Deep-Ritz Standard PINNs
(Galerkin projection) (Galerkin Least-square projection)

1218 MIM=SIS
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Deep-Ritz

DoFs Minimization Problem : Considering the energetic form of our PDE, our discrete problem
is
6, = argmin ayin(6) + Blsc(0) (5)
O€RN

Jn(0) = %/QL(VG)VO - /vae and  Jp(6) = %/@Q(ve —g)?

Monte-Carlo method : Discretize the cost function by random process.

with

* (x1,...,%n) randomly drawn on

n

Jn(0) = 2117 ZL(V&(X,))VQ X)) — = Zf xi)vo (X;)

i=1

* (y1,---,¥n,) randomly drawn on 9%2

Np

Iel0) = 5 3 (0l0) = )’

2n

Remark : = Two different random generation processes (to have enough boundary points)
= Weights v and [3 still need to be determined

1318 MIM=SIS
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Standard PINNs

DoFs Minimization Problem : Considering the least-square form of our PDE, our
discrete problem is
0, = argmin oJjn(6) + Blsc(0) ©)
OERN

with
30 =5 [ =p* and hl) =5 [ g

Monte-Carlo method : Discretize the cost function by random process.

1418 MIM=SIS
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Steps Decomposition - NNs

Encoding ‘ Approximation ‘ Decoding

Mesh-based Methods

Galerkin LS Galerkin ug(x) = D(6u)(x)

vl (R9), ) = 0 | (R(vg), (VoR(ug))) = 0 d

1 ug), i) = ug), (VeR(ug))i) =
= M""b(f) = Z(Qu);@i
A0, =B —
Physically informed learning
Deep-Ritz Standard PINNs
— mi 2 ) _

b = en;lrgv /Q [Ifo — Al Energetic Form LS Form ug(x) = unn(x)

0, = argming g J(0)

Connection : Mesh-Based Methods // Physically Informed Learning

15018 MIM=SIS
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¢»-FEM Method

Main ideas :

+ Domain defined by a LevelSet Function ¢. * We are looking for w such that u = ¢w + g.
I={6=0} Thus, the decoder is written as
¢>0
N
up(x) = Do, (x) = $(x) Y (Bu)is +8(x)
i=1

+ Mesh of a fictitious domain containing €2.

o,

N I'=00 ‘ Ty

0
T,

1618 MIM=SIS
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Impose exact BC in PINNs

Considering the least squares form of our PDE, we impose the exact boundary
conditions by writing our solution as

Up = pwp + g

where wy is our decoder (defined by a neural network such as an MLP).
We then consider the same minimization problem by removing the cost function
associated with the boundary

0, = argminJi,(0) + Jpc(0)

OERN
with
1 2 1 2
In(0) = 3 (L(¢wo + ) — f) and  Jp(0) = = Vo —8)
Q o
Connection: ¢-FEM  //  Exact BCin PINNs

1718 MIM=SIS
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Conclusion

What has been seen ?

* "Physical Informed Learning” = extension of classic numerical methods
— where decoder belongs to a manyfold

+ advantage in high dimensions (parametric PDEs)
+ advantage in the context of complex geometries (mesh-free methods)
Our hybrid approach :

+ It combines

=> Speed of neural networks in predicting a solution
=> Precision of FEM methods to correct and certify the prediction of the NN
(which can be completely wrong, on an unknown dataset for example)

+ Encouraging results on simple geometries

+ Difficulties on complex geometries - Important that its derivatives don't explode —
Next step: learning levelset functions (Eikonal equation)

1818 MIM=SIS
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Thank you !
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Appendix 1 : Encoding - FEMs

We want to project f onto the vector subspace Vy so that fy = py, (f)
thenVi € {1,...,N}, we have

<fe - <Pi> =0
{fo, 0i) = {f, 1)

Z(ef)/<(pjv o) = {f o)

M_Gf = b(f)
0= M~"b(f)

I

with

w:wwwzﬁ@wwow

bm:mwzémmwm
MIM=SIS
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Appendix 2 : Energetic form I

Let's compute the gradient of / with respect to v with

100 =10 4300 = (5 [ = [ 1)+ (5 [ mat?)

* First, let's calculate the differential of J;, with respect to v.
1
Jin(v+€h) = 3 / (AV(v+ ¢h)) - V(v + eh) + c(v+ eh)? — /f(v + ¢h)
Q Q
By bilinearity of the scalar product and by symmetry of A, we finally obtain

DJ(v) - h = Tim 22V €M) —In(V)

e—0 €

- /(—v C(AVY) + v — )b
Q

And thus
Vv./in(V) = L(V) _f: R,',,(V)

2719 MIM=SIS
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Appendix 2 : Energetic form II

* In the same way, we can compute the differential of J, with respect to v.

1
Joe(v+ €h) = 3 V2 + 2evh + €2h* — 2vg — 2ehg + g°

o0
Then
D) = limg LD [ gy
e—0 € 90
And thus
ijbc(v) = (V - g) = RbC(V)
Finally

ij(v) = vv],‘(V) + ijbc(v) = R(V)

3119 MIM=SIS
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Appendix 3 : Galerkin Projection

Let's compute the gradient of / with respect to 6 with

16)=1n®) = 5 | o = [ o

First, we define
N
va:ZH,-go,-:H@ and  Vgpen = (O +€h) - o =vy+ ey,
i=1

Then since A is symmetric

Finally

ans MIM:=SIS
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Appendix 4 : Least-Square form I

Let's compute the gradient of / with respect to v with

10 =300+ = (3 [ #u?) + (5 [ mets?)

« First, let's calculate the differential of J;, with respect to v.

DJin(v) - h = (V - (AVh),V - (AVV) —cv+f) + {ch, =V - (AVV) + v — f)
= —(V - (AVh),Ri(v)) + (ch, Rin(v))
= (=V - (AVRn(v)) + cRin(v), )
= (L(Rn(v)), h)
And thus
Vi Jin(v) = L(Rin(v))

5/19 MIM:=SIS
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Appendix 4 : Least-Square form II

* In the same way, we can compute the differential of J, with respect to v.

1
Joe(v+ €h) = 3 V2 + 2evh + €2h* — 2vg — 2ehg + g°

o0
Then
D) = limg LD [ gy
e—0 € 90
And thus
ijbc(v) = (V - g) = RbC(V)
Finally

Vi J(v) = L(R(V))1a + (v — g)Lan

6/19 MIM=SIS
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Appendix 5 : LS Galerkin Projection

Let's compute the gradient of / with respect to 6 with

16) =1n0) = 5 [ (et~

First, we define

N
va:ZH,-go,-:H@ and  Vgpen = (O +€h) - o =vy+ev,
i=1

Then since A is symmetric

Finally

7119 MIM=SIS
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Appendix 6 : ADAM Method

ADAM = "Adaptive Moment Estimation” - Combine the idea of Moment and RMSProp.

Blm + (1 - ﬁl)vfx

1-p]

2. “ B25+(1_52)v2fx
1- 4]
m

: -/

3 X4 X e

with
+ Tthe number of iteration (starting at 1)
+ € a smoothing parameter

+ B; €]0, 1] which converge quickly to 0.

8/19 MIM=SIS
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Our hybrid method

Appendix 7 : Description
Appendix 8 : ¢-FEM Method
Appendix 9 : Results
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Our hybrid method

Appendix 7 : Description
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Appendix 7 : Objective

Current Objective : Develop hybrid finite element / neural network methods.

OFFLINE :

Several Geometries Several Forces Train a PINNs
) WY A\

ONLINE : Get PINNs Correct prediction

1 Geometry - 1 Force prediction with ¢-FEM

le — &R

On going work :

+ Geometry : 2D, simple, fixed (as circle, ellipse..) — 3D / complex / variable
+ PDE : simple, static (Poisson problem) — complex / dynamic (elasticity, hyper-elasticity)

+ Neural Network : simple and defined everywhere (PINNs) — Neural Operator

9119 MIM=SIS
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Appendix 7 : Correction
Get PINNs Correct prediction
1 Geometry - 1 Force prediction
Wl —sH— [
) L A
¢ and f ‘ U ‘
Uw = Py + 8 Uww — U = uyy + ¢C
(and  g)

Correct by adding : Considering uyy as the prediction of our PINNs (trained to learn
the solution of the elliptic problem), the correction problem consists in writing the

solution as
= v+

and searching C :  — R such that <!
L(C)=f inQ,
{ =0, onT,
with f = f — L(upy) and C = ¢C for the ¢-FEM method.

1019 MIM=SIS
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Our hybrid method

Appendix 8 : ¢-FEM Method
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Appendix 8 : Problem
Let u = ¢w + g such that
—Au=f, inQ,
u=g,onl,
where ¢ is the level-set function and €2 and I are given by :

I'={¢=0} >0

The level-set function ¢ is supposed to be known on R? and sufficiently smooth.
For instance, the signed distance to I is a good candidate.

Remark : Thanks to ¢ and g, the boundary conditions are respected.

11719 MIM=SIS
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Appendix 8 : Fictitious domain

o0,

Q
N =00 r,
o
Ty
‘ Th

¢p : approximation of ¢

Qp, . computational mesh
0%y, : boundary of Q, (02, # T'y)

Remark : nyert Will denote the number of vertices in each direction

-
= T’y = {¢» = 0} : approximate boundary of T
-
-

12119 MIM=SIS
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Appendix 8 : Facets and Cells sets

Ty

0 :
"

= T,I': mesh elements cut by T’

= F}: collects the interior facets of 7,"
(either cut by ', or belonging to a cut mesh element)

13119 MIM=SIS
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Appendix 8 : Poisson problem

Approach Problem : Find w;, € V,Sk) such that

Gh(Wh,Vh) = /h(Vh) Vv, € V,(,k)
where
0
antn) = [ V00w V(ow) — [ oma +[Gw)]
h(v) = [ fov+|GH(v Stabilization terms
0= | o
and

Vi = {vy € H (D) vy, € PU(T), VT E T5} .

For the non homogeneous case, we replace
u=o¢w — uU=¢w+g

by supposing that g is currently given over the entire €2;.

14710 MIM=SIS
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Appendix 8 : Stabilization terms

Independent parameter of h Jump on the interface E
4
WV—O’hZ/|: ]{ (¢hv}+0h2Z/A¢hw (dnv)
EeFY TeT,k
Istorder term 2nd order term
G5 (v) =|—oh? Z /fA onv)
TeTr Z/ (¢nw) + f) A(dpv)

€T,k

1st term : ensure continuity of the solution by penalizing gradient jumps.

— Ghost penalty [Burman, 2010]

2nd term : require the solution to verify the strong form on Q,I:

Purpose:

=> reduce the errors created by the "fictitious” boundary

=> ensure the correct condition number of the finite element matrix
=> restore the coercivity of the bilinear scheme

15/19 MIM=SIS
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Our hybrid method

Appendix 9 : Results
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Appendix 9 : Problem considered
PDE : Poisson problem with Homogeneous Dirichlet conditions
Findu : Q — RY(d = 1,2, 3) such that
—Au=f, inQ,
u=0, onT,

with A the Laplace operator, §2 a smooth bounded open set and I its boundary.
Geometry : Circle - center=(0.5,0.5) , radius=y/2/4

O =10,1)
=> Level-set function:

d(xy) = =1/8+ (x=1/2)* + (y — 1/2)?
V2/4
(05,0.5) => Exact solution :

Uex(X7J/) = ¢(X7Y) Sin(X) exp(y)

16/19 MIM=SIS
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Appendix 9 : Networks

PINNSs : Multi-Layer Perceptron (MLP, Fully connected) with a physical loss

7
7 A
XA, = s . .
7S N foss = mse(A(8(x.y)wo.) 1)
SR80 - :
— O T inputs = (Xi,lyi)}
V‘//’"“\\' outputs={u,}
Input @, O Output i=1, 0,0
Layer Hidden Layers Layer u=g(x, y)wilx, 1)
=> n_layers=4
= n_neurons=20 (in each layer) with (x;,;) € O.
= n_epochs=10000 Remark : We impose exact boundary
- conditions.
-

n_pts=2000 (randomly drawn in the square [0, 1]?)
Some important points :
+ Need upy € IP¥ of high degree (PINNs Ok)
* Need the derivatives to be well learn (PINNs Ok)
« For the correction : Need a correct solution on £2;,, not on €2 (training on the square
for the moment).
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Appendix 9 : Training

prediction, parameters =

solution, parameters =

101y thetat, y) ~ 08 10 o8
08 06 08 06
05 06
04 04
04 04
02 02
02 02
00 00
00 - 00
o0 02 o4 o6 o8 10 @ W2 o W o w9 gagoc
loss history prediction error oY
00025
— walloss | 10 v_{Cheta) (xy-u(x, y)
) ate -
— residua
- 0n 00020
w mas
06 00015
w
04 00010
w0
o 02 00005
3 W W ww we e g

Our hybrid method
O 000 000000 0000

predicion error 0-0.00035

+vo{gheta)(xy)ulx. ) 000035

~ 000030
000025
000020
000015
000010

000005

/\ We consider a single problem (f fixed) on a single geometry (¢ fixed).
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Appendix 9 : Correction

ug e PO 5 geP!

107 —— FEM Calculation time (to reach an error of 1e-4)

—— PHIFEM

—+— Corr_add_FEM mesh [u_PINNs solve TOTAL
102 Corr_add_PHIFEM FEM 0,08832 29,55516| 0,07272 [29,71621

PhiFEM 0,33222 1,86924 | 0,00391 | 2,20537
Corr_add_FEM | 0,00183 | 0,11187 [ 0,46195 | 0,00061 | 0,57626
Corr_add_PhiFEM | 0,03213 | 0,05351 | 0,22006 | 0,00040 | 0,30609

Remark : Problem with assemble and solve time
+ mesh time for ¢»-FEM would be parallelized

107 » mesh - FEM : construct the mesh

(¢-FEM : construct cell/facet sets)

¢ Uu_PINNs - get ug in P'° freedom degrees
107 lfi”m 10* » assemble - assemble the FE matrix

« solve - resolve the linear system

FEM / ¢-FEM : n € {8,16, 32, 64, 128}
Corr: nyer € {5, 10, 15,20, 25,30}

Remark : The stabilisation parameter o of the ¢-FEM method has a major impact on the error
obtained.
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