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Scientific context
Context : Create real-time digital twins of an organ (such as the liver).
ϕ-FEM Method : New fictitious domain finite element method.
Ù domain given by a level-set function⇒ don’t require a mesh fitting the boundary
Ù allow to work on complex geometries
Ù ensure geometric quality

Practical case: Real-time simulation, shape optimization...
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Objectives
Internship objective : Correct and certify the prediction of a Fourier Neural Operator
(FNO), trained with ϕ-FEM solution.

PhD Objective : Develop hybrid finite element / neural network methods.

OFFLINE
• Learn several geometry representations

• Generate ϕ-FEM solutions as training
data on several geometry

• Train a Neural Operator (to map the
geometry and the function on the
solution)

ONLINE
Data : 1 geometry + 1 function

• Compute representation of 1 geometry
and 1 function

• Compute predictions from the Neural
Operator

• Use ϕ-FEM to correct the prediction

Evolution :

• Geometry : 2D, simple, fixed (as circle, ellipse..) → 3D / complex / variable

• PDE : simple, static (Poisson problem) → complex / dynamic (elasticity, hyper-elasticity)

• Neural Network : simple and defined everywhere (PINNs) → Neural Operator
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PDE considered
Poisson problem with Dirichlet conditions :
Find u : Ω → Rd(d = 1, 2, 3) such that{

−∆u = f, in Ω,

u = g, on Γ,
(P )

with∆ the Laplace operator,Ω a smooth bounded open set and Γ its boundary.
We will define by

||uex − umethod||(rel)0,Ω =

∫
Ω
(uex − umethod)

2∫
Ω
u2ex

the relative error between

• uex : the exact solution

• umethod : the solution obtained by a method
(can be : FEM or ϕ-FEM, a correction solver or the prediction of an neural
network).
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Problem - Unknown solution on a Circle
Ù Level-set function :

ϕ(x, y) = −1/8 + (x− 1/2)2 + (y− 1/2)2

Ù FNO solution :

f(x, y) = exp
(
− (x− µ0)

2 + (y− µ1)
2

2σ2

)
(1)

with σ ∼ U([0.1, 0.6])
µ0, µ1 ∼ U(]X0 − r, X0 + r[)

Ù Theoretical experiment solution :

uex(x, y) = S sin
(
8πf

(
(x− 0.5)2 + (y− 0.5)2

)
+ φ

)
(2)

Remark : φ = 0 ⇒ u = 0 on Γ

Ù PINNs solution
uex(x, y) = ϕ(x, y) sin(x) exp(y) (3)
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Finite Element Methods
Standard FEM method
ϕ-FEM method
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Presentation of standard FEMmethod
Variational Problem : Find u ∈ V | a(u, v) = l(v), ∀v ∈ V
with V - Hilbert space, a - bilinear form, l - linear form.

Approach Problem : Find uh ∈ Vh | a(uh, vh) = l(vh), ∀vh ∈ Vh
with • uh ∈ Vh an approximate solution of u,
•Vh ⊂ V, dimVh = Nh < ∞, (∀h > 0)
⇒ Construct a piecewise continuous functions space

Vh := PkC,h = {vh ∈ C0(Ω̄), ∀K ∈ Th, vh|K ∈ Pk}

where Pk is the vector space of polynomials of total degree≤ k.
Th = {K1, . . . , KNe}

(Ne : number of elements)

Finding an approximation of the PDE solution⇒ solving the following linear system:

AU = b

with
A = (a(φi, φj))1≤i,j≤Nh , U = (ui)1≤i≤Nh and b = (l(φj))1≤j≤Nh

where (φ1, . . . , φNh) is a basis of Vh.
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Finite Element Methods
Standard FEM method
ϕ-FEM method
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Problem
Let u = ϕw+ g such that {

−∆u = f, inΩ,

u = g, on Γ,

where ϕ is the level-set function andΩ and Γ are given by :

The level-set function ϕ is supposed to be known onRd and sufficiently smooth.
For instance, the signed distance to Γ is a good candidate.

Remark : Thanks to ϕ and g, the conditions on the boundary are respected.
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Fictitious domain

Ù ϕh : approximation of ϕ
Ù Γh = {ϕh = 0} : approximate boundary of Γ
Ù Ωh : computational mesh
Ù ∂Ωh : boundary ofΩh (∂Ωh ̸= Γh)

Remark : nvert will denote the number of vertices in each direction forO
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Facets and Cells sets

Ù T Γ
h : mesh elements cut by Γh

Ù FΓ
h : collects the interior facets of T Γ

h
(either cut by Γh or belonging to a cut mesh element)
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ϕ-FEMMethod - Poisson problem
Approach Problem : Find wh ∈ V(k)h such that

ah(wh, vh) = lh(vh) ∀vh ∈ V(k)h

where

ah(w, v) =
∫
Ωh

∇(ϕhw) · ∇(ϕhv)−
∫
∂Ωh

∂

∂n
(ϕhw)ϕhv+ Gh(w, v),

lh(v) =
∫
Ωh

fϕhv+ Grhs
h (v) Stabilization terms

and
V(k)h =

{
vh ∈ H1(Ωh) : vh|T ∈ Pk(T), ∀T ∈ Th

}
.

For the non homogeneous case, we replace

u = ϕw → u = ϕw+ g

by supposing that g is currently given over the entireΩh.
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ϕ-FEMMethod - Poisson problem
Approach Problem : Find wh ∈ V(k)h such that

ah(wh, vh) = lh(vh) ∀vh ∈ V(k)h

where

ah(w, v) =
∫
Ωh

∇(ϕhw) · ∇(ϕhv)−
∫
∂Ωh

∂

∂n
(ϕhw)ϕhv+ Gh(w, v) ,

lh(v) =
∫
Ωh

fϕhv+ Grhs
h (v) Stabilization terms

and
V(k)h =

{
vh ∈ H1(Ωh) : vh|T ∈ Pk(T), ∀T ∈ Th

}
.

For the non homogeneous case, we replace

u = ϕw → u = ϕw+ g

by supposing that g is currently given over the entireΩh.
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Stabilization terms

1st term : ensure continuity of the solution by penalizing gradient jumps.
→ Ghost penalty [Burman, 2010]
2nd term : require the solution to verify the strong form onΩΓ

h .
Purpose :
Ù reduce the errors created by the ”fictitious” boundary
Ù ensure the correct condition number of the finite element matrix
Ù restore the coercivity of the bilinear scheme
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Internship results
Correction Methods
Results - with FNO
Other results
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Correction Methods
We are given uθ the FNO prediction (for the problem under consideration).

By adding :
We will consider

ũ = uθ + C̃ ≈ 0

We want C̃ : Ω → Rd such that{
−∆C̃ = f̃, inΩ,

C̃ = 0, on Γ.
(C+)

with f̃ = f + ∆uθ and C̃ = ϕC for the ϕ-
FEM method.
Remark : In practice, it may be useful to inte-
grate by parts the term containing∆uθ .

By multiplying :
Find û : Ω → Rd such that{

−∆û = f, in Ω,

û = g+ m, on Γ,
(PM)

with û = u+ m (m a constant).
We will consider

ũ = uθ C ≈ 1

with ûθ = uθ + m.
We want C : Ω → Rd such that{

−∆(uθC) = f, onΩ,

C = 1, on Γ.
(C×)
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Correction Methods
We are given uθ the FNO prediction (for the problem under consideration).

By adding :
We will consider

ũ = uθ + C̃

We want C̃ : Ω → Rd such that{
−∆C̃ = f̃, inΩ,

C̃ = 0, on Γ.
(C+)

with f̃ = f + ∆uθ and C̃ = ϕC for the ϕ-
FEM method.
Remark : In practice, it may be useful to inte-
grate by parts the term containing∆uθ .

By multiplying - elevated problem :
Find û : Ω → Rd such that{

−∆û = f, in Ω,

û = g+ m, on Γ,
(PM)

with û = u+ m (m a constant).
We will consider

ũ =
∧
uθC

with ûθ = uθ + m.
We want C : Ω → Rd such that{

−∆(
∧
uθC) = f, inΩ,

C = 1, on Γ.
(CM

× )
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Explanation
Train a FNO :

Correct the predictions of the FNO :

Some important points on the FNO :

Ù widely used in PDE solving and constitute an active field of research

Ù FNO are Neural Operator networks : Unlike standard neural networks, which learn
using inputs and outputs of fixed dimensions, neural operators learn operators,
which are mappings between spaces of functions.

Ù Mesh resolution independent : can be evaluated at almost any data resolution
without the need for retraining
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Correction on a FNO prediction - ϕ-FEM
We consider an unknown solution on the circle with f Gaussian (1), nvert = 63,
ndata = 1000 (including validation sample) and ntest = 100.

Training on 4000 epochs
(bs=64,lr=0.01) :

Correction with the different methods :

Remark : We should try to reduce the resolution for correction, maybe we will gain in the time-to-error
ratio.
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Precision of the prediction - FEM
We consider the trigonometric solution on the circle (2) with

uex(x, y) = S sin
(
8πf

(
(x− 0.5)2 + (y− 0.5)2

)
+ φ

)
with S = 0.5 and φ = 0.
Exact solution : Testing different correction methods for different frequencies.

uθ = uex ∈ P10 → ũ ∈ P1

Correction with FEM (nvert = 100) :
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Precision of the prediction - FEM
We consider (S, f, φ) = (0.5, 1, 0).
Disturbed solution : Testing different ϵ and different degree k.

uθ = uex + ϵP ∈ Pk → ũ ∈ P1

with ϵ a real number and P a perturbation.
Correction (C+) with FEM (nvert = 32) : Results for k = 10 :

Remark : P(x, y) = Sp sin
(
8πfp

(
(x − 0.5)2 + (y − 0.5)2

)
+ φp

)
with (Sp, fp, φp) = (0.5, 2, 0)



16/21

16/21

Introduction Finite Element Methods Internship results PhD results Conclusion Bibliography

Theoretical results - FEM
Correction by multiplication on the elevated problem : We consider

• ûex = uex + m : the exact solution of (PM)
• ûθ = uθ + m : a disturbed solution of (PM).
• ũh = ûθCh : the approximate solution of (CM

× )
1. When m tends to infinity :

solution of (CM
× )→ solution of (C+)

Results : nvert = 32, ϵ = 0.001

2. Form sufficiently large : Cex = ûex/ûθ

||Cex − Ch||0,Ω ≤ chk+1ϵ ||P′′||0,Ω
Results : nvert = 32, ϵ = 0.001, fp = 2
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PhD results
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Explanation
Context : Need uθ ∈ Pk with k of high degree

FNO
(on a regular grid)

→ NN which can predict
solution at any point

Solutions :

1. MLP - Multi-Layer Perceptron
(= Fully connected)

Problem : As the prediction is injected
into an FEM solver, the accuracy of the
derivatives is very important.

2. PINNs - MLP with a physical loss

loss = mse(∆(ϕ(xi, yi)wθ,i) + fi)

with (xi, yi) ∈ O.
Remark : We impose exact boundary
conditions.
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PINNs Training
We consider the solution on the circle defined in (3) and defined by

uex(x, y) = ϕ(x, y) sin(x) exp(y)

We train a PINNs with 4 layers of 20 neurons over 10000 epochs (with npts = 2000
points selected uniformly overO).

"We consider a single problem (f fixed) on a single geometry (ϕ fixed).
||uex − uθ||(rel)0,Ω ≈ 2.81e− 3
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Derivatives
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Correction by addition
uθ ∈ P10 → ũ ∈ P1

FEM / ϕ-FEM : nvert ∈ {8, 16, 32, 64, 128}
Corr : nvert ∈ {5, 10, 15, 20, 25, 30}

•mesh - FEM : construct the mesh
(ϕ-FEM : construct cell/facet sets)
• u_PINNs - get uθ in P10 freedom degrees
• assemble - assemble the FE matrix
• solve - resolve the linear system

Remark : The stabilisation parameter σ of the ϕ-FEM method has a major impact on the error
obtained.
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Conclusion
Observations :
1. Correction by addition seems to be the best choice
(based on theoretical results obtained with FEM)
2. We need a high degree prediction (uθ ∈ P10)
⇒ no longer use FNO (needs NN defined at any point)
3. We need to approximate the derivatives of the solution precisely
⇒ no longer use simple MLP, replaced by a PINNs

What’s next ?
1. Consider multiple problems (varying f)
2. Consider multiple and more complex geometry (varying ϕ)
3. Replace PINNs with a Neural Operator
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Architecture of the FNO

Input X of shape (bs,ni,nj,nk) Output Y of shape (bs,ni,nj,1)
with bs the batch size, ni and nj the grid resolution and nk the number of channels.
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Description of the FNO architecture

Ù perform a P transformation, to move to a space with more channels (to build a
sufficiently rich representation of the data)

Ù apply L Fourier layers defined by

Hl
θ(X̃) = σ

(
C l
θ(X̃) + Bl

θ(X̃)
)
, l = 1, . . . , L

with X̃ the input of the current layer and
– σ an activation function (ReLU or GELU)
– C l

θ : convolution sublayer (convolution performed by Fast Fourier Transform)
– Bl

θ : ”bias-sublayer”

Ù return to the target dimension by performing a Q transformation (in our case, the
number of output channels is 1)
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Fourier Layer Structure
Convolution sublayer : C l

θ(X) = F−1(F(X) · Ŵ)

Ù Ŵ : a trainable kernel
Ù F : 2D Discrete Fourier Transform (DFT) defined by

F(X)ijk =
1

ni
1

nj

ni−1∑
i′=0

nj−1∑
j′=0

Xi′ j′ke
−2

√
−1π

(
ii′
ni +

jj′
nj

)

F−1 : its inverse.
Ù (Y · Ŵ)ijk =

∑
k′ Yijk′Ŵijk′ ⇒ applied channel by channel

Bias-sublayer : Bl
θ(X)ijk =

∑
k′ XijkWk′k + Bk

Ù 2D convolution with a kernel of size 1
Ù allowing channels to be mixed via a kernel without allowing interaction between

pixels.
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Dual method - Poisson Problem
Problem : Find u onΩh and p onΩΓ

h such that∫
Ωh

∇u∇v−
∫
∂Ωh

∂u
∂n

v+
γ

h2
∑
T∈T Γ

h

∫
T

(
u− 1

h
ϕp

)(
v− 1

h
ϕq

)

+ Gh(u, v) =
∫
Ωh

fv+ Grhs
h (v), ∀v onΩh, q onΩΓ

h

with γ an other positive stabilization parameter and Gh and Grhs
h the stabilization

terms defined previously.
For the non homogeneous case, we replace∫

T

(
u− 1

h
ϕp

)(
v− 1

h
ϕq

)
→

∫
T

(
u− 1

h
ϕp− g

)(
v− 1

h
ϕq

)
by assuming g is defined onΩΓ

h
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