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Scientific context

Context : Create real-time digital twins of an organ (such as the liver).

¢-FEM Method : New fictitious domain finite element method.

=> domain given by a level-set function = don't require a mesh fitting the boundary
=> allow to work on complex geometries

=> ensure geometric quality

mesh with FEM mesh with PhiFEM
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Practical case: Real-time simulation, shape optimization...
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Objectives

Internship objective : Correct and certify the prediction of a Fourier Neural Operator
(FNO), trained with ¢-FEM solution.

PhD Objective : Develop hybrid finite element / neural network methods.

OFFLINE ONLINE

+ Learn several geometry representations Data: 1 geometry + 1 function
+ Compute representation of 1 geometry
and 1 function

+ Compute predictions from the Neural

+ Generate ¢-FEM solutions as training
data on several geometry

+ Train a Neural Operator (to map the Operator
geometry and the function on the o
solution) + Use ¢-FEM to correct the prediction
Evolution :

+ Geometry : 2D, simple, fixed (as circle, ellipse..) — 3D / complex / variable
+ PDE : simple, static (Poisson problem) — complex / dynamic (elasticity, hyper-elasticity)

+ Neural Network : simple and defined everywhere (PINNs) — Neural Operator

221 MIM=SIS
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PDE considered

Poisson problem with Dirichlet conditions :
Findu : Q — RY(d = 1,2, 3) such that

—Au=f, in €,
u=g, onl,

with A the Laplace operator, {2 a smooth bounded open set and I its boundary.
We will define by
(rel) fQ(Uex - Umethod)2
Huex - Umethod”o Q=" 7 5
. [, u2
0 Ye
the relative error between
* Uy : the exact solution
* Umethod - the solution obtained by a method
(can be : FEM or ¢-FEM, a correction solver or the prediction of an neural
network).
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Problem - Unknown solution on a Circle

=> Level-set function:

Pxy) = —1/8+ (x—1/2)* + (y — 1/2)?

=> FNO solution:

@ 0,1

V2/4
(0.5,05) flx,y) = exp (—
with o ~4(]0.1,0.6])
po, 1~ U(Xo — . X0 + ()
=> Theoretical experiment solution :
Uex(x,y) = Ssin (87f ((x — 0.5)> + (y — 0.5)%) + ) )

Remark: ¢ =0 = u=0onD
=> PINNs solution

(x—MO)2+(y—M1)2> ™)

202

uex(%,¥) = o(x,y) sin(x) exp(y) (3)
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Finite Element Methods

Standard FEM method
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Presentation of standard FEM method

Variational Problem: Findu € V| a(u,v) =I(v), Wv eV
with V - Hilbert space, a - bilinear form, / - linear form.

Approach Problem:  Find u, € V, | a(up,vy) = I(vy), Yvy € Vy
with ¢ u, € V, an approximate solution of u,

Vy C V, dimV, = Ny < o0, (Vh > 0)

= Construct a piecewise continuous functions space

Vi := PE, = {vn € (), VK € T, v € Pi}

Tn={K1,. . Kne }
(Ne : number of elements)

where P is the vector space of polynomials of total degree < k.

Finding an approximation of the PDE solution = solving the following linear system:
AU=0b
with
A= (algi9))i<ijem, U= (u)i<icn, and b= (I())1gj<n,
where (@1, ..., @y, ) is a basis of V.
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Finite Element Methods

¢-FEM method
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Problem

Let u = ¢w + g such that
—Au=f, inQ,
u=g,onl,
where ¢ is the level-set function and §2 and I" are given by :

I'={¢=0} 550

The level-set function ¢ is supposed to be known on R? and sufficiently smooth.
For instance, the signed distance to I is a good candidate.

Remark : Thanks to ¢ and g, the conditions on the boundary are respected.
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Fictitious domain

o0,

Q

N I'=09Q Ty

0
T

¢p : approximation of ¢

Qp, : computational mesh
0%y, : boundary of Q, (092, # T'y)

Remark : nyers will denote the number of vertices in each direction for O

-
= T, = {¢n = 0} : approximate boundary of T’
-
-
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Facets and Cells sets

Ty

7
)

= T,I': mesh elements cut by T’

= F} : collects the interior facets of 7,1
(either cut by I'y, or belonging to a cut mesh element)

821 MIM=SIS
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¢»-FEM Method - Poisson problem

Approach Problem : Find w;, € V,Sk) such that

Gh(Wh,Vh) = /h(Vh) Vv, € V,(,k)

where

aw) = | V(gw) V(gw) /8 ) O ) buy+ Ga(w,v),

Qp on

h(v) = [ fow+ Gy (v)
Qn

and
k
V0 = (v € () s i, € M), VT € Ti}
For the non homogeneous case, we replace
u=o¢w — uU=¢w+g

by supposing that g is currently given over the entire €2;.
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¢»-FEM Method - Poisson problem

Approach Problem : Find w;, € V,Sk) such that

Gh(Wh,Vh) = /h(Vh) Vv, € V,(,k)

where
0
antn) = [ V00w V(ow) — [ oma +[Gw)]
Ih(v) = /thqﬁtht Stabilization terms
and

Vi = {vy € H (D) vy, € PU(T), VT E T5} .

For the non homogeneous case, we replace
u=o¢w — uU=¢w+g

by supposing that g is currently given over the entire €2;.
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Stabilization terms

Independent parameter of h Jump on the interface E
WV*O'hZ/|: :||: (¢hvj|+gh2Z/A¢hW ¢hV)
EEF) TeT”
1storder term 2ndorder term
G (v) =|—oh? Z /fA bnv)
TeTr Z/ (¢nw) + f) A(dnv)

e,k

1st term : ensure continuity of the solution by penalizing gradient jumps.
— Ghost penalty [Burman, 2010]
2nd term : require the solution to verify the strong form on Q}:

Purpose:

=> reduce the errors created by the "fictitious” boundary

=> ensure the correct condition number of the finite element matrix
=> restore the coercivity of the bilinear scheme

1021 MIM=SIS
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Correction Methods

We are given ug the FNO prediction (for the problem under consideration).
By multiplying :

By adding :

We will consider

i =up+|Cl0

We want C :  — R? such that
We will consider

—AC=f, inQ, )
=0, onT. + “:“9%1
with f = f+ Aug and € = ¢C for the ¢- We want C : 2 — R¥ such that
FEM method.
Remark : In practice, it may be useful to inte- — A(upC) =f, on$,
grate by parts the term containing Aug. c—1 on T Cx)

1721 MIM=SIS
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We are given ug the FNO prediction (for the problem under consideration).

By adding :
We will consider

U= ug +C
We want C :  — R? such that
_AE :.?7
c=0,
with f = f + Aug and C = ¢C for the ¢-
FEM method.

Remark : In practice, it may be useful to inte-
grate by parts the term containing Aug.

in Q,

C
onI. (©+)

11/21

By multiplying - elevated problem :
Find o : © — R? such that

u=g+m,
with U = u 4+ m (m a constant).
We will consider

in €,

7),'\/1
on I, ( )

u= uAgC

with Uy = ug + m.
We want C :  — R? such that

{ - A(UAGC) :fa

:17

in 2,

C/\/l
on T. (©7)
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Explanation
Traina FNO :

Correct the predictions of the FNO :

Testdata:

ENOtraining :

X foss, == 34 W,,~ oW,

Correction :
= by adding
»| - by multiplying

with TEM
¢—FEM

train

Y . .
fram ; pred L ¢ W/}, J

¢—FEM solution

Some important points on the FNO :
=> widely used in PDE solving and constitute an active field of research

=> FNO are Neural Operator networks : Unlike standard neural networks, which learn
using inputs and outputs of fixed dimensions, neural operators learn operators,
which are mappings between spaces of functions.

=> Mesh resolution independent : can be evaluated at almost any data resolution
without the need for retraining

12721 MIM=SIS
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Correction on a FNO prediction - ¢-FEM

We consider an unknown solution on the circle with f Gaussian (1), nye; = 63,
Ngata = 1000 (including validation sample) and ngss = 100.

Correction with the different methods :

Training on 4000 epochs . type i
10 N Corr_add
(bS=64,|r=0.01) . == Corr_mult .
B Corr_mult (m=1000) H .
= FNO i i
w [
102
w g i |

PhiFEM epoch=1000 epoch=2000 epoch=3000 epoch=4000
epoch

Remark : We should try to reduce the resolution for correction, maybe we will gain in the time-to-error
ratio.
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Precision of the prediction - FEM

We consider the trigonometric solution on the circle (2) with

Uex(x,y) = Ssin (87f ((x — 0.5)% + (y — 0.5)%) + )

withS = 0.5and ¢ = 0.

Exact solution : Testing different correction methods for different frequencies.

Ug = Uy € PO — e P!

Correction with FEM (nye; = 100):

fem

Corr_add Corr_add_IPP

Corr_mult

f=1 2.10e-03
f=2 6.62e-03
f=3 1.4le-02

f=4 2.42e-02

2.44e-10
1.53e-10
8.86e-11

9.52e-11

1.29e-13

1.28e-13

1.27e-13

1.26e-13

2.97e-13

2.80e-13

2.68e-13

2.61e-13

14/21
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Precision of the prediction - FEM

We consider (S, f, ¢) = (0.5,1,0).
Disturbed solution : Testing different € and different degree k.

with € a real number and P a perturbation.
Correction (C) with FEM (nyee = 32):

10°

107 \
102

10-3
1074
10-°
10-°
107
108

norm

— P2
07 P4

107 - —— P10

eps =1

Remark : P(x,y) = Spsin (8f, ((x — 0.5)2 + (y — 0.5)2) + p) with (Sp, fo, ¥p) = (0.5,2,0)

15/21

eps = 0.1

eps = 0.01

eps = 0.001 eps = 0.0001

eps = 0.0

Up = Uy + PP — G eP!

Results fork =1
eps

1.00e+00
1.00e-01
1.00e-02
1.00e-03
1.00e-04

0.00e+00

ision

0:

corr_add
6.57e-02
6.57e-03
6.57e-04
6.57e-05
6.57e-06

2.44e-11

Bibliography
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Theoretical results - FEM

Correction by multiplication on the elevated problem : We consider
* Uy, = Uy + m : the exact solution of (P*)
* Uy = up + m: adisturbed solution of (P).
* Uy = UyCp : the approximate solution of (C’XM)

1. When m tends to infinity : 2. For m sufficiently large : Coy = U/l
solution of (C) — solution of (C ;) ||Cox — Callg. < ch*elIP]o.q
Results : e = 32, ¢ = 0.001 Results : Ny = 32, ¢ = 0.001, f, =2
eps = 0.001 eps = 0.001;fp=2

1072
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Context : Need ug € P¥ with k of high degree

FNO
(on a regular grid)
Solutions :

1. MLP - Multi-Layer Perceptron
(= Fully connected)

Input Output

Layer Hidden Layers Layer

Problem : As the prediction is injected
into an FEM solver, the accuracy of the
derivatives is very important.

17/21

NN which can predict
solution at any point

2. PINNs - MLP with a physical loss

loss = mse(A(p(x;, yi)wo i) + i)

inputs={(x,-,y,-)}

outputs={u,}
i=1

u=g(x, i) wol xi, y1)
with (x;, ;) € O.

Remark : We impose exact boundary
conditions.

MIM:=SIS
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We consider the solution on the circle defined in (3) and defined by

Uex(X,y) = ¢(x,y) sin(x) exp(y)
We train a PINNs with 4 layers of 20 neurons over 10000 epochs (with n,s = 2000
points selected uniformly over O).

prediction, parameters =

- unetate.y)

Fos 1o

06 08

solution, parameters =

oo 0z os o5 ds 1o
prediction error

/\ We consider a single problem (f fixed) on a single geometry (¢ fixed).

|[Uex — ue\léf"g ~ 2.8le — 3

18/21

v (Deta) bt )

0-0.0025

00025

prediction error

00020

" mask

0z d3 s o5 o 07 o8

0-0.00035

vaDheta) bt )

000035

000030

000025

000020

000010

000005
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0000

First derivative according to x

1078 Lo7s
du_ex_dx du_dx |du_ex_dx-du_pytorch_dx|
10 019 10 0919 10
o761 o761
0s 0s
0s02 0s02
<
oo 044 00 043 06
(=]
04 021 ;0.6 0285 g4
o1 o126
02 02 02
0032 0032
00 011 00 011 00
@ oa de o5 1 o o5 o4 o o8 10 2o o2 i ds ds
o349 o349
Second derivative according to x
am am
du_ex_dxx du_dxx |du_ex_dxx-du_pytorch_dxx|
10 2000 10 4000 10
528 5228
os 0s
2456 2456
=
os o8 06 1e85 06
(]
0 o2 4, 013 o,
WE ore
02 02 02
oest oest
00 1403 00 1403 00
0o o2 o+ o5 o5 10 2o o2 s o5 s 1o 2o 02 o0& o5 o5 10
e A

0.0028

0.0025

0.0022

0.0018

0.0016

0.0012

0.0008

0.0006

0.0003

0.0000

0032

0028

0024

0020

0016

0012

0.008

0.004

0.000
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104

10—

10t

10°
Time

nternship results
0000

—— FEM
—— PHIFEM

—+— Corr_add_FEM
Corr_add_PHIFEM

10*

FEM / ¢-FEM : n € {8,16, 32, 64, 128}
Corr: nyer € {5, 10, 15,20, 25,30}

Remark : The stabilisation parameter o of the ¢-FEM method has a major impact on the error

obtained.

20/21

PhD results

Conclusion

Calculation time (to reach an error of 1le-4)

Bibliography
(e}

mesh | u_PINNs solve TOTAL
FEM 0,08832 29,55516| 0,07272 (29,71621
PhiFEM 0,33222 1,86924 | 0,00391 | 2,20537
Corr_add_FEM | 0,00183 | 0,11187 [ 0,46195 | 0,00061 | 0,57626
Corr_add_PhiFEM | 0,03213 | 0,05351 | 0,22006 | 0,00040 | 0,30609

¢ mesh - FEM : construct the mesh
(¢-FEM : construct cell/facet sets)
¢ U_PINNSs - get ug in P10 freedom degrees
¢ assemble - assemble the FE matrix
* solve - resolve the linear system

MIM=SIS
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Conclusion

Observations :

1. Correction by addition seems to be the best choice

(based on theoretical results obtained with FEM)

2. We need a high degree prediction (ug € P1?)

=> no longer use FNO (needs NN defined at any point)

3. We need to approximate the derivatives of the solution precisely
=> no longer use simple MLP, replaced by a PINNs

What's next ?

1. Consider multiple problems (varying f)

2. Consider multiple and more complex geometry (varying ¢)
3. Replace PINNs with a Neural Operator

21721 MIM=SIS
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Architecture of the FNO

Input: Fourier Layer Fourier Layer Fourier Layer Output :
> S 1 —> 2 — s —> L —> —>
X p H, | H, H, Q Y

> F —> W —( !

Input X of shape (bs,ni,nj,nk) Output Y of shape (bs,ni,nj,1)
with bs the batch size, ni and nj the grid resolution and nk the number of channels.

T MIM:=SIS



Description of the FNO architecture

Input: Fourier Layer Fourier Layer Fourier Layer Output :
> g 1 —> 2 —P s —p L —> —>
X P Hb’ Hd Hd Q Y

=> perform a P transformation, to move to a space with more channels (to build a
sufficiently rich representation of the data)

=> apply L Fourier layers defined by
Hy(X) = o (Cy(X) + By(X)), I=1,...,L

with X the input of the current layer and
- o an activation function (ReLU or GELU)
- Cf9 : convolution sublayer (convolution performed by Fast Fourier Transform)
- B} : "bias-sublayer”
=> return to the target dimension by performing a Q transformation (in our case, the
number of output channels is 1)

24 MIM=SIS



Fourier Layer Structure

1

) F — W —>F
Convolution sublayer: Cj,(X) = F~1(F(X)-w) |C),

= |¥/: atrainable kernel
= F : 2D Discrete Fourier Transform (DFT) defined by

ni—1nj—1

T

i'=0j'=
F~L:its inverse.
= (Y- W)=, YwWu = applied channel by channel

1
Bias-sublayer: By (X)ju = Y. XjuWik + B«

=> 2D convolution with a kernel of size 1
= allowing channels to be mixed via a kernel without allowing interaction between
pixels.

34 MIM=SIS



Dual method - Poisson Problem

Problem : Find u on €2, and p on Q] such that
Oou 5y 1 1
VuVv — —V+ = /(u — d)p) (v — d)q)
Q o0, On"  h? 2 r h h

+ Gu(u,v) = [ v+ G(v), YvonQp, qonQf
Qp

with ~y an other positive stabilization parameter and G, and G} the stabilization
terms defined previously.
For the non homogeneous case, we replace

Jlemson) (o) = [ e owmg) (o)

by assuming g is defined on 2}
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